Scientists Identify Mechanism Responsible for Spreading Biofilm Infections

Article

Scientists from the National Institutes of Health (NIH) have discovered how catheter-related bacterial infection develops and disseminates to become a potentially life-threatening condition. The study, which included research on Staphylococcus epidermidis in mice implanted with catheters, could have important implications for understanding many types of bacterial biofilm infections, including those caused by methicillin-resistant S. aureus (MRSA).

Biofilms are clusters of microbes that almost always are found with healthcare-associated infections (HAIs) involving medical devices such as catheters, pacemakers and prosthetics. Most often biofilms that develop on such devices consist of Staph bacteria. Because biofilms inherently resist antibiotics and immune defenses, treating patients with biofilm-associated infections can be difficult and expensive. An estimated two million HAIs, most of which are associated with biofilms, occur in the United States annually, accounting for about 100,000 deaths.

Although biofilm-related infections result in significant numbers of deaths, scientists still have a limited understanding of how biofilms develop at a molecular level. But now scientists from NIH's National Institute of Allergy and Infectious Diseases (NIAID) have identified a specific S. epidermidis protein, called phenol-soluble modulin beta (PSM-beta), that biofilms use for multiple purposes: to grow, to detach from an implanted medical device, and to disseminate infection. Antibodies against PSM-beta slowed bacterial spread within the study mice, suggesting that interfering with biofilm development could provide a way to stop the spread of biofilm-associated infection.

Similar proteins also are found in S. aureus, and the research group now plans to study their role in biofilms of MRSA and other bacteria.

Reference: Wang R, et al. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. The Journal of Clinical Investigation 121(1): DOI: 10.1172/JCI42520 (2011).

Related Videos
Infection Control Today Topic of the Month: Mental Health
Infection Control Today Topic of the Month: Mental Health
An eye instrument holding an intraocular lens for cataract surgery. How to clean and sterilize it appropriately?   (Adobe Stock 417326809By Mohammed)
UV-C Robots by OhmniLabs.  (Photo from OhmniLabs website.)
CDC  (Adobe Stock, unknown)
Laparoscopy(Adobe Stock 338216574 by Damian)
Sterile processing   (Adobe Stock, unknown)
Jill Holdsworth, CIC, FAPIC, NREMT, CRCST, manager of infection prevention at Emory University Hospital Midtown; and Cheron Rojo, BS, FCs, CHL, CIS, CER, CFER, CRCST, clinical education coordinator for sterile processing departments, Healthmark
The Joint Commission Seal
Related Content