Stress not only sends the human immune system into overdrive it can also wreak havoc on the trillions of bacteria that work and thrive inside our digestive system.
New research suggests that this may be important because those bacteria play a significant role in triggering the innate immune system to stay slightly active, and thereby prepared to quickly spring into action in the face of an infection.
But exactly how stress makes these changes in these bacteria still isnt quite clear, researchers say.
"Since graduate school, Ive been interested in how stress affects the bacteria naturally in our bodies," explains Michael Bailey, an assistant professor of dentistry and member of the Institute for Behavioral Medicine Research at Ohio State University. "Even though weve known that stress changes these bacteria, we didnt really understand what that meant or if there was any sort of biological function associated with effects on these bacteria."
The new study appears in the current issue of the journal Brain, Behavior and Immunity.
The human digestive tract is a universe filled with microbes. There are probably 100 trillion bacteria in the average human, 90 percent of which live mainly in the intestine. They easily outnumber human cells 10-to-one in each person.
Bailey and colleagues turned to mice to better understand the roles that bacteria play in immune balance. They ran a series of experiments using a common stressor for these animals. For two hours daily for six days, an aggressive mouse was placed in a cage of a group of more docile mice.
At the end of the string of experiments, blood samples were taken from both stressed animals and matched mice from a control group, along with samples of material from inside each animals intestine. The blood samples were analyzed to detect the levels of two biomarkers used to gauge stress a cytokine called interleukin-6 (IL-6) and a protein called MCP-1 that summons macrophages, or scavenger cells, to the site of an infection.
From the intestinal samples, Baileys team could determine the relative proportion of at least 30 types of bacteria residing there.
Compared to the control mice, the stressed animals showed two marked differences: The proportion of one important type of bacteria in the gut Bacteroides fell by 20 to 25 percent while another type Clostridium increased a similar amount. Also, levels of the two biomarkers, IL-6 and MCP-1, jumped 10-fold in the stressed mice, compared to controls.
The researchers then treated stressed mice with broad-spectrum antibiotics that could kill as much as 90 percent of the intestinal bacteria for a short period. When they again looked at the two immune biomarkers in the stressed mice, they saw only a doubling of IL-6 and MCP-1 an increase only one-fifth as much.
"We know now that if we knock the population of bacteria down with antibiotics, we dont have the same innate immune response," Bailey said. "That showed that the bacteria are involved in the ability of stress to prime the innate immune system."
He said that the research shows that some of the changes in systemic immunity in the body can be influenced by changes in these bacterial colonies, a result that reinforces the idea that they have a broader effect on the immune response.
The next step, the researchers say, is to better understand the roles that the bacteria play in activating the immune system, and to determine if other factors are playing a key role in the process.
Working with Bailey on the project were Jeff Galley, Amy Hufnagle and Rebecca Allen, also from Ohio State; Scot Dowd of the Medical Biofilm Research Institute in Lubbock, TX, and Mark Lyte from Texas Tech University.
The research was supported in part by the National Institutes of Health and by grants from both Ohio State and Texas Tech.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.