Computer chips of a type more commonly found in games consoles have been used by scientists at the University of Bristol to reveal how the flu virus resists anti-flu drugs such as Relenza and Tamiflu.
Professor Adrian Mulholland and Dr. Christopher Woods from Bristols School of Chemistry, together with colleagues in Thailand, used graphics processing units (GPUs) to simulate the molecular processes that take place when these drugs are used to treat the H1N1-2009 strain of influenza commonly known as swine flu.
Â
Their results, published May 29Â in Biochemistry, provide new insight that could lead to the development of the next generation of antiviral treatments for flu.
Â
H1N1-2009 is a new, highly adaptive virus derived from different gene segments of swine, avian, and human influenza. Within a few months of its appearance in early 2009, the H1N1-2009 strain caused the first flu pandemic of the 21st century.
Â
The antiviral drugs Relenza and Tamiflu, which target the neuraminidase (NA) enzyme, successfully treated the infection but widespread use of these drugs has led to a series of mutations in NA that reduce the drugs effectiveness.
Â
Clinical studies indicate that the double mutant of swine flu NA known as IRHY2 reduced the effectiveness of Relenza by 21 times and Tamiflu by 12,374 times that is, to the point where it has become an ineffective treatment.
Â
To understand why the effectiveness of Relenza and Tamiflu is so seriously reduced by the occurrence of this mutation, the researchers performed long-timescale molecular dynamics (MD) simulations using GPUs.
Â
Mulholland says,  Our simulations showed that IRHY became resistant to Tamiflu due to the loss of key hydrogen bonds between the drug and residues in a part of the NAs structure known as the 150-loop. This allowed NA to change from a closed to an open conformation. Tamiflu binds weakly with the open conformation due to poor electrostatic interactions between the drug and the active site, thus rendering the drug ineffective.
Â
These findings suggest that drug resistance could be overcome by increasing hydrogen bond interactions between NA inhibitors and residues in the 150-loop, with the aim of maintaining the closed conformation.
Â
The research was supported by the Engineering and Physical Sciences Research Council (EPSRC) through a Leadership Fellowship grant to Professor Mulholland and a software development grant to Professor Mulholland and Dr Woods.
 Â
Reference: Long Time Scale GPU Dynamics Reveal the Mechanism of Drug Resistance of the Dual Mutant I223R/H275Y Neuraminidase from H1N1-2009 Influenza Virus.' Â Christopher J. Woods, Maturos Malaisree, Naruwan Pattarapongdilok,Pornthep Sompornpisut, Supot Hannongbua and Adrian J. Mulholland. Biochemistry.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Phage Therapy’s Future: Tackling Antimicrobial Resistance With Precision Viruses
April 24th 2025Bacteriophage therapy presents a promising alternative to antibiotics, especially as antimicrobial resistance continues to increase. Dr. Ran Nir-Paz discusses its potential, challenges, and future applications in this technology.