The discovery by researchers from the Walter and Eliza Hall Institute of a molecule that is key to malaria's 'invisibility cloak' will help to better understand how the parasite causes disease and escapes from the defenses mounted by the immune system.
The research team, led by professor Alan Cowman from the institute's Infection and Immunity division, has identified one of the crucial molecules that instructs the parasite to employ its invisibility cloak to hide from the immune system, and helps its offspring to remember how to 'make' the cloak.
In research published today in the journal Cell Host and Microbe, Cowman and colleagues reveal details about the first molecule found to control the genetic expression of PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1), a protein that is known to be a major cause of disease during malaria infection.
"The molecule that we discovered, named PfSET10, plays an important role in the genetic control of PfEMP1; an essential parasite protein that is used during specific stages of parasite development for its survival," Cowman says.
"This is the first protein that has been found at what we call the 'active' site, where control of the genes that produce PfEMP1 occurs. Knowing the genes involved in the production of PfEMP1 is key to understanding how this parasite escapes the defenses deployed against it by our immune system," he says.
PfEMP1 plays two important roles in malaria infection. It enables the parasite to stick to cells on the internal lining of blood vessels, which prevents the infected cells from being eliminated from the body. It is also responsible for helping the parasite to escape destruction by the immune system, by varying the genetic code of the PfEMP1 protein so that at least some of the parasites will evade detection. This variation lends the parasite the 'cloak of invisibility' which makes it difficult for the immune system to detect parasite-infected cells, and is part of the reason a vaccine has remained elusive.
Cowman says identification of the PfSET10 molecule was the first step towards unveiling the way in which the parasite uses PfEMP1 as an invisibility cloak to hide itself from the immune system.
"As we better understand the systems that control how the PfEMP1 protein is encoded and produced by the parasite, including the molecules that are involved in controlling the process, we will be able to produce targeted treatments that would be more effective in preventing malaria infection in the approximately 3 billion people who are at risk of contracting malaria worldwide," he says.
Each year more than 250 million people are infected with malaria and approximately 655,000 people, mostly children, die. Cowman has spent more than 30 years studying Plasmodium falciparum, the most lethal of the four Plasmodium species, with the aim of developing new vaccines and treatments for the disease.
The research was carried out in collaboration with scientists from the Wellcome Trust Sanger Institute, Nijmegen Center for Molecular Life Sciences, Cell-free Science and Technology Research Center and The Royal Melbourne Hospital. The research was supported by the National Health and Medical Research Council of Australia and the Victorian Government.
Â
Â
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.