Scientists are providing new details on how a protein on the tail of a virus uses a screw-like motion to penetrate and infect bacteria. In an advance in understanding Mother Natures copy machines, motors, assembly lines, and other biological nano-machines, scientists are describing how a multipurpose protein on the tail of a virus bores into bacteria like a drill bit, clears the shavings out of the hole, and enlarges the hole. They report on the "Swiss Army Knife" protein, which enables the virus to pump its genetic material into and thus infect bacteria, in the Journal of the American Chemical Society.
Akio Kitao and colleagues focus on a group of viruses termed "bacteriophages," which literally means "bacteria eaters." These viruses infect bacteria like E. coli, and usually make the bacteria dissolve. Infection involves injecting their own DNA or RNA into the bacteria, so that the viral genetic material takes over control of the bacteria. The tools for doing so are among numerous invisible nanomachines so small that 50,000 would fit across the width of a human hair that work unnoticed in organisms ranging from microbes to people.
The scientists recreated intricate details of the proteins work as it helps the tail of the virus infect E. coli bacteria. Their computer models show that the protein performs tasks in a regular sequence, starting with a screw-like motion as it begins to penetrate the outer membrane of E. coli. The protein acts as a cell-puncturing bit, a pipe to draw away membrane debris, and a tool to enlarge the puncture hole, among other functions. The infection process demonstrates "a case where a single-function protein acquired multiple chemical functions" as different parts of its structure come in contact with bacterial membrane proteins.
The authors acknowledge funding from the Ministry of Education, Culture, Sports, Science and Technology-Japan (MEXT) and Japan Science and Technology Agency (JST).
Unmasking Long COVID: Dr Noah Greenspan on Recovery, Research Gaps, and the Future of Treatment
March 18th 2025Dr Noah Greenspan discusses the evolving understanding of long COVID, current treatment strategies, diagnostic challenges, and the critical need for research and awareness in post-viral syndromes.
Obituary: In Memory of SMART4TB and Project ACCELERATE
March 14th 2025In this remembrance of SMART4TB and Project ACCLERATE, 2 global health initiatives, Heather Stoltzfus, MPH, RN, CIC, explains what they are and why they serve as a warning of what has been lost and what more could be lost in the future.
The Art of Wise Leadership in Infection Control and Quality Management
March 14th 2025Discover how wise leadership in infection control transforms challenges into opportunities, fosters teamwork, and safeguards patient safety through emotional intelligence, strategic vision, and inspiring action.
The CDC at a Crossroads: Budget Cuts, Public Health, and the Growing Threat of Infectious Diseases
March 12th 2025Budget cuts to the CDC threaten disease surveillance, outbreak response, and public health programs, increasing risks from measles, avian flu, and future pandemics while straining health care infrastructure nationwide.