An astonishing number of viruses are circulating around the Earth's atmosphere -- and falling from it -- according to new research from scientists in Canada, Spain and the U.S.
An astonishing number of viruses are circulating around the Earth's atmosphere -- and falling from it -- according to new research from scientists in Canada, Spain and the U.S.
The study marks the first time scientists have quantified the viruses being swept up from the Earth's surface into the free troposphere, that layer of atmosphere beyond Earth's weather systems but below the stratosphere where jet airplanes fly. The viruses can be carried thousands of kilometers there before being deposited back onto the Earth's surface.
"Every day, more than 800 million viruses are deposited per square meter above the planetary boundary layer--that's 25 viruses for each person in Canada," said University of British Columbia virologist Curtis Suttle, one of the senior authors of a paper in the International Society for Microbial Ecology Journal that outlines the findings.
"Roughly 20 years ago we began finding genetically similar viruses occurring in very different environments around the globe," says Suttle. "This preponderance of long-residence viruses travelling the atmosphere likely explains why--it's quite conceivable to have a virus swept up into the atmosphere on one continent and deposited on another."
Bacteria and viruses are swept up in the atmosphere in small particles from soil-dust and sea spray.
Suttle and colleagues at the University of Granada and San Diego State University wanted to know how much of that material is carried up above the atmospheric boundary layer above 2,500 to 3,000 meters. At that altitude, particles are subject to long-range transport unlike particles lower in the atmosphere.
Using platform sites high in Spain's Sierra Nevada Mountains, the researchers found billions of viruses and tens of millions of bacteria are being deposited per square metre per day. The deposition rates for viruses were nine to 461 times greater than the rates for bacteria.
"Bacteria and viruses are typically deposited back to Earth via rain events and Saharan dust intrusions. However, the rain was less efficient removing viruses from the atmosphere," said author and microbial ecologist Isabel Reche from the University of Granada.
The researchers also found the majority of the viruses carried signatures indicating they had been swept up into the air from sea spray. The viruses tend to hitch rides on smaller, lighter, organic particles suspended in air and gas, meaning they can stay aloft in the atmosphere longer.
Source: University of British Columbia
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.