Influenza has distinct transmission patterns around the world. In temperate regions, influenzas occurrence peaks during the winter season, while in some tropical regions, the diseases occurrence tends to correspond with the rainy season.
Linsey Marr, associate professor of civil and environmental engineering at Virginia Tech, and her colleagues, Wan Yang, of Blacksburg, Va., one of her doctoral students, and Elankumaran Subbiah, a virologist in the biomedical sciences and pathobiology department of the Virginia-Maryland Regional College of Veterinary Medicine, measured the influenza A virus survival rate at various levels of humidity.
Their study presents for the first time the relationship between the influenza A virus viability in human mucus and humidity over a large range of relative humidities, from 17 percent to 100 percent. They found the viability of the flu A virus was highest when the relative humidity was either close to 100 percent or below 50 percent. The results in human mucus may help explain influenzas seasonality in different regions.
We added flu viruses to droplets of simulated respiratory fluid and to actual human mucus and then measured what fraction survived after exposure to low, medium, and high relative humidities, says Marr.
At low humidity, respiratory droplets evaporate completely and the virus survives well under dry conditions. But at moderate humidity, the droplets evaporate some, but not completely, leaving the virus exposed to higher levels of chemicals in the fluid and compromising the virus ability to infect cells.
In a past study also conducted by Marr, Yang and Subbiah, published in United Kingdoms Journal of the Royal Society Interface, the researchers collected samples from a waiting room of a healthcare center, two toddlers rooms and one babies area of a daycare center, as well as three cross-country flights. Findings showed the average concentration was 16,000 viruses per cubic meter of air, and the majority of the viruses were associated with fine particles, less than 2.5 micrometers, which can remain suspended for hours.
Possible explanations for the seasonality of the flu have been investigated, such as the return of kids to school, people spending more time indoors in the winter, and lower light levels that affect the immune system, but there is no agreement on them, says Marr, who is the NSF CAREER award recipient.
The researchers found humidity could explain the seasonality of influenza by controlling the ability of viruses to remain infectious while they are in droplets or aerosols. The viruses survived best at low humidity, such as those found indoors in the winter, and at extremely high humidity. Humidity affects the composition of the fluid, namely the concentrations of salts and proteins in respiratory droplets, and this affects the survival rates of the flu virus.
Source: Virginia Tech
Â
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.