Recent research into COVID-19 suggests that health care systems need to move beyond the idea that pathogen spread happens either via droplets or aerosolized particles. Patients can generate the full range of respiratory particles.
The innumerable problems with health care systems in the United States and the rest of the world that were exposed by COVID-19 continue to keep medical investigators busy. They are finding yet more dimensions to the pandemic that has stomped about since March 2020.
At the beginning of the pandemic, experts struggled to understand just how the SARS-CoV-2 virus spreads: by droplets or particles? But that might not be the right question.
In a review published in November 2021 in the Annals of Internal Medicine (AIM),1 Michael Klompas, MD, MPH, an infectious disease expert and a professor of population medicine at Harvard Medical School in Boston, Massachusetts, and his colleagues argue that division of droplet and aerosol transmission is misguided and needs to be retired.
Michael Klompas, MD, MPH
There are viruses such as influenza and mumps that spread by relatively large droplets produced by coughing and sneezing and that fall to the ground relatively quickly. Doctors, nurses, and other clinicians are advised to wear face masks to block the droplets.
Other pathogens are aerosolized, spreading via minute respiratory particles that individuals produce when they talk and breathe. Aerosols tend to stay suspended in the air for much longer periods of times than droplets and travel much farther.
As an article in ICT® pointed out in October 2020, perhaps the best analogy for COVID-19 would be how cigarette smoke can linger and spread in an enclosed setting such as a bar (back when smoking was allowed in those establishments).2 In such a situation, 6-foot social distancing offers very little protection.
Measles and tuberculosis are 2 examples of viruses that spread this way. Precautions against aerosols include N95 masks, negative-pressure rooms, ventilation, and high-efficiency particulate air (HEPA) filters.
Klompas et al argue that research into COVID-19 and the SARS-CoV-2 virus demonstrates that individuals generate the full range of respiratory particles, not just either droplets or aerosols. Aerosolized droplets can stay aloft for long periods, and respiratory viruses are not picky about the size of particle that they hitch a ride on. However, aerosols may account for most transmission, partly because individuals produce aerosols just by talking and breathing.
The governing factor of transmission, wrote Klompas et al, is infectious dose—the amount of virus an individual is exposed to. Infectious dose is a product of time and exposure concentration, or how much virus is in the air, the authors wrote. Poor ventilation can allow virus-laden aerosols to accumulate and increase the exposure concentration and, as a result, the infectious dose. Good ventilation, HEPA filters, and ultraviolet disinfection can decrease the amount of virus floating in the air.
Source strength—or how much virus an infected individual is spewing into the air in respiratory particles—is another factor in the complicated question, the authors explained.
Klompas et al discussed some of the implications of the current understanding of respiratory virus transmission for infection control policies and programs. Here is their list of potential policy responses, which was included in the AIM review:
This article originally appeared in Managed Healthcare Executive®.
References:
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Rethinking Clean: How Outdated Disinfection Practices Are Fueling the AMR Crisis
July 31st 2025As drug-resistant infections rise, infection preventionists must look beyond outdated disinfectants. HOCl offers a safer, sustainable solution that has been proven effective, residue-free, and ready for health care use today.
Sharps Safety Starts with Us: Why Infection Preventionists Must Lead the Charge
July 31st 2025Sharps injuries remain a silent but serious threat in health care that infection preventionists are uniquely equipped to confront. With underreporting widespread and safety devices underused, it’s time for IPs to step into a leadership role, using their expertise in systems thinking, education, and policy to build a culture where staff protection is as prioritized as patient care.
Is the US Quietly Ending COVID-19 Vaccination for the Young and Healthy
July 31st 2025As the FDA limits COVID-19 vaccine approvals to high-risk groups, healthy adults and pregnant individuals are being left behind. Learn how these changes could impact insurance coverage, long COVID prevention, and public health strategies.
Flawed From the Start: Why Many IFUs for Surgical Instruments Fail in Real-World Sterile Processing
July 31st 2025At the 2025 HSPA Annual Conference & Expo, Cori L. Ofstead, MSPH, highlighted critical flaws in manufacturers’ instructions for use (IFUs) for orthopedic and neurosurgical instruments. From contradictory directions to unrealistic cleaning expectations, these IFUs often fail under real-world conditions, jeopardizing both patient safety and sterile processing workflows.