Antibiotic useand misuseis the main driver for selection of antibiotic resistant bacteria. This has led many countries to implement interventions designed to reduce overall antibiotic consumption. Now, using methicillin-resistant Staphylococcus aureus (MRSA) as an example, Laura Temime of the Conservatoire National des Arts et Metiers, Paris, and collaborators warn that simply reducing antibiotics consumption does not necessarily reduce resistance. The research is published online ahead of print in Antimicrobial Agents and Chemotherapy.
The success of antibiotic reduction programs depends on which antibiotics are reduced, because some select more strongly for resistance than others. For instance, in the case of S. aureus, reducing use of clindamycin and methicillin lead to decreased resistance, while reducing use of penicillins does not, since most S. aureus, including MRSA, are already resistant to penicillin, explains Temime.
Additionally, efforts to reduce antibiotic use must be coordinated between hospitals and the community, since either can feed resistant bacteria into the other, undermining reduction efforts, says Temime.
In 2002-2003, a national program reduced antibiotic use in France by 10 percent. However, it fell short of the full potential for reducing resistance because it failed to target those antibiotics that generate the most resistance, says Temime. She and her collaborators developed a mathematical model of MRSA circulation, which correctly simulated that reduction, post-facto. They then performed a number of simulations of reductions in antibiotic use, which demonstrated the complexities of reduction efforts.
"We found that the reduction in MRSA hospital rates could have been much larger than it actually was following the 2002 antibiotic reduction campaign," says Temime. "Our results also suggest that changes in the distribution of antibiotics prescribed for non-hospitalized patients actually limited the impact of the antibiotic reduction campaign in French hospitals."
Their research shows that class-specific changes in antibiotic use, rather than overall reductions, need to be considered in order to achieve the greatest benefit from antibiotic reduction campaigns, says Temime. "This underlines the importance of generating surveillance data on both antibiotic class-specific changes in antibiotic use and antibiotic resistance in the years following an antibiotic reduction campaign. We believe that this research may help health policy makers and physicians in the design of more efficient antibiotic reduction campaigns."
Source: American Society for Microbiology (ASM)
Â
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.