Increased levels of antibiotic resistant bacteria in the environment may have different causes. It could be a consequence of on-site selection from antibiotic residues in the environment, hence promoting the evolution of new forms of resistance. Alternatively, it is simply due contamination by fecal bacteria that often tend to be more resistant than other bacteria. Understanding which explanation is correct is fundamental to manage risks.
A study published in Nature Communications shows that "crAssphage," a virus specific to bacteria in human feces, is highly correlated to the abundance of antibiotic resistance genes in environmental samples. This indicates that fecal pollution can largely explain the increase in resistant bacteria often found in human-impacted environments. There was, however, one clear exception where resistance genes were very common also without the presence of the phage -- environments polluted with high levels of antibiotics from manufacturing.
Joakim Larsson, professor in environmental pharmacology at Sahlgrenska Academy, University of Gothenburg, and one of the co-authors, notes, "These finding are important as they can inform management of human health risks associated with antibiotic resistant bacteria in the environment. While antibiotic residues is clearly the cause for the exceptionally high levels of resistance found near some manufacturing sites, fecal pollution is probably the explanation in most other places."
One may wonder if this means that we do not need to care about the low levels of antibiotics released from e.g. sewage treatment plants world-wide. Larsson comments "The study indicates the importance of taking into account the level of fecal pollution when interpreting findings of antibiotic resistance in the environment. It implicates that one often do not need to explain such findings by on-site selection from residual antibiotics. But it does not exclude that there still is selection by low levels of antibiotics in the environment going in in parallel. Other findings still suggest that low, environmental levels of certain antibiotics could select for resistance. This needs further research."
Source: University of Gothenburg
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.