There may be a "silver bullet" for Ebola, a family of hemorrhagic viruses, one of which has killed more than 11,000 people in West Africa in the past two years. Researchers at Vanderbilt University Medical Center and the University of Texas Medical Branch in Galveston (UTMB) reported today in the journal Cell that they have isolated human monoclonal antibodies from Ebola survivors which can neutralize multiple species of the virus.
James Crowe, MD, director of the Vanderbilt Vaccine Center, watches graduate student Andrew Flyak plate antibody-producing B cells from people in Africa who have survived infection by the Ebola virus. Courtesy of Vanderbilt University Medical Center
There may be a "silver bullet" for Ebola, a family of hemorrhagic viruses, one of which has killed more than 11,000 people in West Africa in the past two years. Researchers at Vanderbilt University Medical Center and the University of Texas Medical Branch in Galveston (UTMB) reported today in the journal Cell that they have isolated human monoclonal antibodies from Ebola survivors which can neutralize multiple species of the virus.
"We thought we would need five different sets of vaccines or five different (drugs)," says James Crowe Jr., MD, the Ann Scott Carrell Professor and director of the Vanderbilt Vaccine Center, who led Vanderbilt's end of the research.
"This work suggests there are common elements across different groups of Ebola viruses," Crowe says. "Maybe we can come up with one therapeutic or one vaccine that would solve all of them."
"In this study, a remarkably diverse array of virus-specific antibodies was isolated, which appeared to bind to various parts of the envelope protein of the virus," says UTMB professor Alexander Bukreyev, PhD, corresponding author of the paper with Crowe who led the UTMB team. "Some of the antibodies neutralized not only Ebola Bundibugyo virus, but also Ebola Sudan virus and Ebola Zaire virus, similar to that which caused the recent outbreak in West Africa."
Ebola virus disease is spread by contact with contaminated body fluids, including blood and semen. It can cause massive bleeding. The death rate is about 50 percent.
The World Health Organization has reported 24 Ebola outbreaks since 1976, the largest of which is thought to have begun in Guinea in December 2013. Of the 28,600 people who had been infected as of this month, 40 percent have died.
Several experimental Ebola vaccines and monoclonal antibody therapies currently are in development.
Monoclonal antibodies are generated by clones of a type of white blood cell that have been fused to myeloma (cancer) cells to form fast-growing "hybridomas." Like heat-seeking missiles, they seek out and destroy their targets, in this case, the Ebola virus.
Unlike vaccines, antibody treatments are meant to provide short-term protection to health care workers and others at risk of exposure. They also could be used as antiviral drugs to treat patients who are already infected with Ebola virus.
Last week, researchers at Albert Einstein College of Medicine in New York reported that "bispecific" monoclonal antibodies they engineered to recognize two species of Ebola virus provided a high degree of protection in mice exposed to two Ebola viral species.
In the current study, Vanderbilt researchers led by graduate student Andrew Flyak, the paper's first author, used a high-efficiency method they developed to quickly isolate and generate large quantities of monoclonal human antibodies from the blood of survivors of a 2007 outbreak in Uganda who were infected by the Bundibugyo ebolavirus.
Components of the study, which require work with live viruses, were performed by Bukreyev's team at the Galveston National Laboratory at UTMB, which has biosafety facilities capable of handling Ebolaviruses safely.
In addition to neutralizing multiple Ebolavirus species, one of the antibodies also protected guinea pigs from a lethal challenge of virus.
Previous therapeutics used re-engineered mouse antibodies. "This work points the way to using fully human antibodies as the next generation of antibody therapeutics," Crowe said.
"From the human antibody work ... and the vaccine work that's being done, it's clear we can find a protective strategy for Ebola," he says. "That's a big step forward."
The research was supported in part by three grants from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health - grants AI109711, AI109762 and AI067927 - and by a Defense Threat Reduction Agency award, HDTRA1-13-1-0034.
Source: Vanderbilt University Medical Center
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.