LONDON -- -- A new biodegradable polymer has potential application in reducing infection associated with the use of implanted medical devices. The development was reported this week to the British Pharmaceutical Conference by researchers from the school of pharmacy at Queen's University Belfast.
Adherence of bacteria to implanted medical devices, such as urinary stents and catheters, can lead to infection, which means that they periodically have to be removed. One way of reducing risk of infection is to coat the device with a biodegradable polymer coating, such that bacteria adhering to the surface are shed as the polymer degrades.
The next step, as reported at the conference, is to provide further protection by incorporating an antibiotic into the polymer coating. This gives a two-pronged attack on adherent bacteria: the release of antibiotic and the degradation of the substrate onto which the bacteria have adhered. Clearly this approach will only work if the addition of antibiotic does not affect the mechanical properties of the coating.
To test this, the Belfast experiments involved incorporation of the antibiotic rifampicin into films of polycaprolactone, a biodegradable polymer that has attracted attention as a coating material for medical devices.
Adding the antibiotic had limited effects on the mechanical properties of the polymer. The researchers concluded: "As the inclusion of rifampicin did not compromise the physicochemical properties of polycaprolactone, this antimicrobial agent may be useful in the design of antimicrobial biodegradable coatings based on this polymer."
Professor David Jones, from the Queen's group, commented, "The challenge ahead is to engineer the rate of degradation to equal the rate of bacterial adherence, thereby effectively cleaning the surface of the device."
Source: The Royal Pharmaceutical Society of Great Britain
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.