Bacteria that cause infectious diseases produce a number of cytotoxins, and an international research team has now found the mechanism behind one of these toxins. The new results could make it possible in future to develop new treatment methods to impair the cytotoxic activity and thereby reduce the severity of infectious diseases.
In spite of the fact that the first antibiotics were discovered almost a century ago, infectious diseases such as tuberculosis, encephalitis and meningitis are still serious diseases for humans in the 21st century. The World Health Organization (WHO) estimates that there are more than 8 million new cases of tuberculosis per year on a global scale, and that more than 300,000 of these are due to multidrug-resistant strains that are not only difficult to treat, but are also emerging rapidly in regions such as Eastern Europe.
Â
Bacterial tolerance is not just due to resistance, but also to the formation of persistent cells that have gone into a dormant state where they are no longer sensitive to antibiotics. On the molecular level, this process is controlled by a number of advanced cytotoxins produced by the bacteria themselves in order to survive. In Mycobacterium tuberculosis the organism that causes tuberculosis there are no fewer than 88 such toxins, all of which presumably help the organism to survive.
Â
In a new article in the journal Nature Communications, an international team of researchers with the participation of the Department of Molecular Biology and Genetics, Aarhus University, has revealed the mechanism behind one of these toxins VapC20. It turns out that when the toxin is activated, it destroys the tuberculosis bacterias own protein factory (the ribosome) by cleavage. The bacteria are thereby unable to produce proteins in the short term, and thus avoid the effect of antibiotics that also often attack the ribosome.
Â
When treatment with antibiotics is completed, the pathogenic bacteria wake up and are ready to synthesize new ribosomes. Surprisingly, it appears that the location in the ribosome that is cleaved by VapC20 is the same place that is destroyed by the strong cytotoxins -sarcin and ricin, which are found in plants such as castor beans and are twice as venomous as cobra snake poison.
Â
Further analysis of the cleavage point in the ribosome also shows that the mechanism is presumably general for a number of the many toxins, and the new knowledge could therefore be used in future to develop new ways of treating pathogenic bacteria by impairing their ability to use such cytotoxins.
Reference: Winther, KS, Brodersen, DE, Brown, AK, and Gerdes, K (2013) VapC20 of Mycobacterium tuberculosis Cleaves the Sarcin Ricin Loop of 23S rRNA, Nature Communications.
Source: Aarhus University
Â
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.