Researcher discovers existing drugs can potentially target the disease's ability to spread.
Often causing no symptoms in carriers of the disease, worldwide tuberculosis (TB) infects 8 million to 10 million people every year, kills 2 million, and it is highly contagious as it is spread through coughing and sneezing.
"It's a global health disaster waiting to happen, even here in Canada, but this new paradigm in TB research may offer an immediate opportunity to improve vaccination and treatment initiatives," explains Dr. Maziar Divangahi of McGill University and of the Research Institute of the McGill University Health Centre.
The ability of TB bacteria to persist in individuals with apparently normal immune systems implies that they have developed strategies to avoid, evade, and even subvert immunity. The bacteria mainly enter the body through inhalation into the respiratory tract. Alveolar macrophages, a type of white blood cell residing in our lungs, initially recognize the bacteria and engulf them. This process is one of our immune system's defense mechanisms. However, TB has evolved into a parasite that can survive and replicate inside the macrophages until they burst out, spreading the infection.
The way infected macrophages die is a determining factor in the development of immunity to TB. Macrophages can induce apoptosis, a type of cell death which keeps their membrane intact, trapping and reducing bacterial viability. However, TB bacteria induce another type of cell death called necrosis. Necrosis causes cell death by disrupting the cell membranes, which enables the bacteria to escape the cell. It may help to visualize a box with broken walls.
The key to the fate of the macrophages is the balance between two kinds of eicosanoids. Eicosanoids are molecules that contribute to the control of our immune system. The genetic code of TB bacteria enables it to tip this balance in favor of necrosis, and human genetic analysis revealed that modification in eicosanoids production is associated with susceptibility or resistance to TB. Fortunately, drugs that target the production of eicosanoids are already in use for treating other inflammatory diseases, such as rheumatoid arthritis.
"The next steps will be to see exactly how these drugs can be used to treat TB," said Divangahi.
The research received funding from the Fonds de la Recherche en Santé du Québec and was published in Nature Immunology. Divangahi is affiliated with the Departments of Medicine and Microbiology/Immunology of McGill's Faculty of Medicine, with the Research Institute of the McGill University Health Centre, and with the Meakins-Christie Laboratory.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.