Three Simon Fraser University scientists are among six researchers whove made a discovery that could help revolutionize antibiotic treatment of deadly bacteria. Lisa Craig, Christopher Ford and Subramaniapillai Kolappan, SFU researchers in molecular biology and biochemistry, have explained how Vibrio cholerae became a deadly pathogen thousands of years ago.
V. cholerae causes the diarrheal disease cholera, which is endemic in many developing countries and can emerge in regions devastated by war and natural disasters. An outbreak following the 2010 earthquake in Haiti has killed at least 7,500 people.
Two genes within V. choleraes genome make it toxic and deadly. The bacterium acquired these genes when a bacterial virus or bacteriophage called CTX-phi infected it.
The SFU researchers and their colleagues at the University of Oslo and Harvard Medical School propose that a Trojan horse-like mechanism within V. cholerae enabled CTX-phi to invade it.
The CTX-phi latches onto a long, hair-like pilus filament floating on the surface of V. cholerae. The filament then retracts, pulling the toxin-gene-carrying CTX-phi inside the bacterium where it binds to TolA, a protein in the bacterial wall. The process transforms V. cholerae into a deadly human pathogen.
The Journal of Biological Chemistry has just published a paper written by the researchers describing the atomic structures of the CTX-phi protein pIII alone and bound to V. cholera TolA.
The authors recommend that pilus filaments be explored further as a transport mechanism to deliver antibiotics into a bacterium.
Wed be exploiting the pilus retraction mechanism to introduce antibiotics directly into a cell, bypassing its outer membrane barrier, explains Craig. The SFU associate professor is an expert on the role that pili play in bacterial infections. We do have antibiotics for V. cholerae, but these antibiotics also kill beneficial bacteria in the gut. The idea of using pili as a Trojan horse for antibiotic delivery is new and allows us to specifically and effectively target a given bacterial pathogen.
Craig says her teams discovery of V. choleraes retractable pili is made all the more exciting by the simplicity of its workings. We know that other deadly bacteria have retractable pili but itll be much easier to isolate how the mechanism can be used to uptake antibiotics in Vibrio cholerae.
Craig says using pili as an antibiotic delivery mechanism to treat Pseudomonas aeruginosa, a deadly bacterial respiratory infection that hits mainly people with Cystic Fibrosis, could save many lives.
Christopher Ford is a research associate in Craigs lab. Subramaniapillai Kolappan, one of Craigs masters students, recently graduated from SFU.
Â
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.