A common oral bacteria, Fusobacterium nucleatum, acts like a key to open a door in human blood vessels and leads the way for it and other bacteria like Escherichia coli to invade the body through the blood and make people sick, according to dental researchers at Case Western Reserve University.
Yiping Han, professor of periodontics at the Case Western Reserve School of Dental Medicine, made the discovery in her continued work with the Fusobacterium nucleatum bacterium, one of the most prevalent of the more than 700 bacteria in the mouth.
She found the Gram-negative anaerobe has a novel adhesin or bonding agent shes named FadA that triggers a cascade of signals that break the junctures in an interlocking sheath of endothelial cells on blood vessels surface just enough to allow F. nucleatum and other bacteria into the blood.
A description of bond-breaking process was described in the Molecular Microbiology article, Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity.
The microbiologist at the dental school has studied the oral bacteria over the past decade and was the first to find direct evidence that linked it to preterm labor and fetal death. But its presence is found in other infections and abscesses in the brain, lungs, liver, spleen and joints.
After finding and genetically matching the oral bacteria in the fetal death, she began to unravel the mystery of how an oral bacterium can be found throughout the body and jumps the blood-brain and placental barriers that usually block disease-causing agents.
Through years of lab work, her research led to the vascular endothelial (VE)-cadherin, cell-cell junctures that link the endothelial vascular cells together on the blood vessels.
These junctures are like a hook and loop connection, but for some unknown reason when F. nucleatum invades the body through breaks in the mucous membranes of the mouth, due to injuries or periodontal disease, this particular bacterium triggers a cascade of signals that causes the hook to recede back into the endothelial cell. The oral bacterium leads the way with any other harmful invaders following along.
This deceding was observed by confocal microscopy when Han used cells from human umbilical cord. The researchers introduced F. nucleatum and demonstrated the VE-cadherins break on bonds on the endothelial cells and creating enough space in the endothelium for the invaders to move in.
Lab tests included introducing F. nucleatum with and without other bacteria. When E. coli alone was introduced, the bond did not break. But when F. nucleatum was introduced first, the bond broke, and the E. coli bacteria were able to move through the otherwise intact cell layers.
This cascade knocks out the guard on duty and allows the bacteria to enter the blood and travel like a bus loaded with riders throughout the system. Whenever the F. nucleatum wants to get off the bus at the liver, brain, spleen, or another place, it does, Han says.
When it disembarks from its ride through the blood, it begins to colonize. The colony of bacteria induces an inflammatory reaction that has a range of consequences from necrosis of tissue to fetal death.
Case Western Reserve University research collaborators include Yann Fardini, Xiaowei Wang, Stephanie Temoin, Stanley Nithianantham, David Lee, and Menachem Shoham.
Â
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.
Global Patients, Local Risks: Why Medical Tourism Demands Infection Preventionists’ Attention
June 16th 2025At APIC25, infection prevention leader Heather Stoltzfus, MPH, RN, CIC, will spotlight the growing risks and overlooked responsibilities associated with medical tourism. Her session urges infection preventionists to engage with a global health trend that directly impacts US care settings.