Some new research on a bacterial predator that feeds on other bacteria may lead to new ammunition against biofilms. The research is published in the June issue of the Journal of Bacteriology.
Bacterial pathogens frequently form biofilms, which adhere to surfaces, and which are far more resistant to antibiotics than are individual bacteria. Biofilms are the culprits in a wide variety of infections, which range from minor problems to major chronic problems, to the lethal.
The predatory bacteria, members of the genus Bdellovibrio, eat their prey, larger, oft-pathogenic bacteria, from the inside. They have other amazing attributes, including their incredible speed, 100 body lengths per second, propelled by a single sheathed flagellum, which leads their student, Liz Sockett of the University of Nottingham, UK, to characterize them as the Bugatti Veyron (top speed 250 mpg) of the microbial world. But in the new research, Sockett's colleagues Carey Lambert and Andy Fenton show that Bdellovibrio bacteriovorus can switch "engines"who knew it had two?and crawl along at a snail-like 20 body lengths per hour. That laid back locomotion "lets the Bdellovibrio exit from a bacterial prey cell which it has finished digesting, and crawl across a solid surface to find other bacterial prey to invade," says Sockett.
It is important to understand and preserve this laid back form of locomotion "if Bdellovibrio are to be used in the future to kill pathogenic bacteria on solid surfaces, like medical biofilms, where there may be too little liquid for swimming," says Sockett. Others, she says, have identified the similarly slow engines in the Bdellovibrio relatives, the Myxobacteria, and comparing the two engines may illuminate the mechanics in ways that could lead to medical applications, she says.
As for those medical applications, suffice it to say that biofilms play a role in urinary tract infections, and middle ear infections; they form on catheters, on teeth and in gums (dental plaque, and gingivitis, respectively), and they are common in lethal infections such as cystic fibrosis and endocarditis. "The hope is that one day Bdellovibrio in slow gear will mop them up."
Reference: C. Lambert, A.K. Fenton, L. Hobley, and R.E. Sockett, 2011. Predatory Bdellovibrio bacteria use gliding motility to scout for prey on surfaces. J. Bacteriol. 193:3139-3141.
The Key to Sterile Processing Success: Leadership Engagement and Team Collaboration
January 24th 2025Effective sterile processing leadership requires active engagement, clear communication, and a transformational approach to foster collaboration, accountability, and quality in infection prevention and surgical instrument management.
Top 7 Infection Control Today Articles of 2024: Insights and Innovations
December 30th 2024From advanced sterilization methods to combating antimicrobial resistance, Infection Control Today’s top articles of 2024 delivered actionable strategies for safer healthcare environments and improved patient outcomes.
Redefining Competency: A Comprehensive Framework for Infection Preventionists
December 19th 2024Explore APIC’s groundbreaking framework for defining and documenting infection preventionist competency. Christine Zirges, DNP, ACNS-BC, CIC, FAPIC, shares insights on advancing professional growth, improving patient safety, and navigating regulatory challenges.
Tackling Health Care-Associated Infections: SHEA’s Bold 10-Year Research Plan to Save Lives
December 12th 2024Discover SHEA's visionary 10-year plan to reduce HAIs by advancing infection prevention strategies, understanding transmission, and improving diagnostic practices for better patient outcomes.
Environmental Hygiene: Air Pressure and Ventilation: Negative vs Positive Pressure
December 10th 2024Learn more about how effective air pressure regulation in health care facilities is crucial for controlling airborne pathogens like tuberculosis and COVID-19, ensuring a safer environment for all patients and staff.
Pioneering Advances in Sterilization: The Future of Infection Control
November 28th 2024Germitec, STERIS, ASP, and Zuno Medical are pioneering sterilization advancements with groundbreaking technologies that enhance SPD workflows, improve patient safety, and redefine infection control standards.