A University of Alberta researcher is moving closer to understanding how infection is caused by the spread of bacteria.
In a study published in the journal Structure, Joel Weiner and his collaborators, Gerd Prehna and Natalie Stynadka at the University of British Columbia, share new knowledge about how bacteria release proteins.
Â
Proteins are complex molecules that perform all sorts of functions in the cells of living things. The group studied a specific protein called YebF in E. coli bacteria. It is widely found in other bacteria as well.
Solving the structure and understanding the mechanism by which this protein spreads bacterial pathogens was a big step forward. As humans develop more resistance to antibiotics, researchers are in search of new ways to stop bacteria from spreading.
"Most pathogenic bacteria induce special structures in order to release proteins that allow them to infect a host," says Weiner, of the Department of Biochemistry, whose lab is funded by the Natural Sciences & Engineering Research Council and the Canadian Institutes of Health Research. "What we show here is that normal, run-of-the-mill bacteria can actually release a protein through the pores [of the bacterial membrane] which are normally there to take in small molecules."
YebF proved to be an interesting protein molecule because in addition to its release through the bacterial pore, which is the most recent discovery, it has the unique property of secreting "passenger proteins" that are attached to it. This unique property was a prior discovery patented by the U of A because it has potential use for the production of protein-based drugs by the pharmaceutical and biotechnology industry.
"What we found in the structure is that there are regions that are very flexible in YebF that seem to be very important in getting it out of the bacteria," said Weiner. "If you make mutants in those regions you can prevent the protein from going out.
Â
"We're not investing enough in identifying new targets for antibiotics," he says. "What this system does suggests a new target. We're looking at drugs that could block the ability of YebF to go out.
Â
"That's really easy to test for," he adds. Because the screen is easy, it's good for pharmaceutical companies."
This step in the research took several years, because solving the structure of this protein wasn't easy. The lab typically uses crystallization but stubborn YebF wouldn't work, so instead they had to use nuclear magnetic resonance.
Typically researchers know what action takes place and they try to find the protein that triggers it. In this case the researchers have been working the opposite direction. They have the protein, YebF, but they need to find out its purpose in the cell.
Â
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Phage Therapy’s Future: Tackling Antimicrobial Resistance With Precision Viruses
April 24th 2025Bacteriophage therapy presents a promising alternative to antibiotics, especially as antimicrobial resistance continues to increase. Dr. Ran Nir-Paz discusses its potential, challenges, and future applications in this technology.