South Australian researchers are embarking on a $20 million medical and manufacturing research project which could reduce the chance of infection after orthopaedic surgery, thanks to a little help from the humble dragonfly.
Working with leading surgeons and an Australian orthopaedic medical device company, researchers from the University of Adelaide and University of South Australia (UniSA) will use nano-modification technology based on the structure of the dragonfly wing, whose tiny spikes rip bacteria apart.
In a unique R&D and manufacturing environment, researchers are carrying out a range of groundbreaking experiments to test whether mimicking the nano-patterns of the dragonfly wing on orthopaedic implants can kill harmful bacteria that cause infections.
The four-year project, co-funded by Global Orthopaedic Technology and the Innovation Manufacturing Cooperative Research Centre (IMCRC), could give scientists and clinicians a critical breakthrough in their global fight against antibiotic resistant bacteria, and is intended to create new technologies and processes to benefit the wider manufacturing sector.
Professor Richard de Steiger, a leading Australian orthopaedic surgeon involved in clinical research, says implant infection post-surgery is a billion dollar problem worldwide, affecting around 2 percent to 3 percent of medical implants, including devices to stabilise fractures, hip and knee replacements and spinal implants.
“There hasn’t been any improvement in orthopaedic infection rates for the past 15 years, costing not only hundreds of millions of dollars in additional surgery worldwide, but more trauma for patients needing extra recovery time after a second operation, which is often less successful and poses an even greater risk of infection,” he says.
Leading scientists from the University of Adelaide and UniSA will combine their expertise to create titanium implants with the dragonfly wing surface while confirming their safety and testing their bacteria-killing properties in the University of Adelaide’s Centre for Orthopaedic and Trauma Research (COTR) and UniSA’s new Musculoskeletal Biotest Facility.
“This research is a combination of cell biology and very clever nanomanufacturing techniques, driven by an unmet medical need,” says University of Adelaide leading orthopaedic researcher professor Gerald Atkins, Scientific Director of COTR. “It is game-changing Australian technology.”
UniSA professor Krasimir Vasilev adds: “This is amazing technology that will improve the quality of life of millions of patients around the world. The project is also a great example of transdisciplinary collaboration between scientists, clinicians and industry, transforming healthcare, manufacturing industry and the Australian economy.”
The bacteria-busting qualities of the dragonfly were first identified by Australian researchers who observed bacteria being killed on the insects’ wings, characterized by tiny spikes – nanopillars – which are about one thousandth of the thickness of a human hair.
Global Orthopaedic Technology is taking the technology a step further, partnering with “the best researchers in Australia” to commercialise the technology and tackle the growing epidemic of resistant bacteria and resulting infections.
David Chuter, IMCRC’s CEO and managing director, says this research project is reshaping not only the future of the medical device industry, but potentially other sectors.
“Due to the nature of the nano surface, which is independent of the chemistry and material properties of the substrate to which it is applied, the technology can potentially be used in other manufacturing processes across multiple industries, most notably the hospital supplies and equipment industry, the food industry, the marine industry, the building products industry, and the aeronautical industry.
“The new technology will open many doors, not just in the medical field, as antibacterial surfaces are also valuable in the food industry, for example - in fact, for any surfaces subject to high levels of bacteria.”
Global Orthopaedic Technology and IMCRC are each providing a $3 million cash investment as part of a total medical and manufacturing R&D investment of $20 million, with the additional funding provided through in-kind contributions from Global Orthopaedic Technology and both universities.
Source: University of Adelaide
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.