Scientists have created a fluorescent probe that can tag and illuminate single specimens of the bacteria that cause tuberculosis (TB), one of the world's most problematic infectious diseases. The probe, along with a microfluidic chip that counts TB bacteria, could find applications in fields ranging from diagnosis of TB to assessing the effectiveness of novel therapies.
TB, caused by the bacterium Mycobacterium tuberculosis (Mtb), is a highly contagious disease that infects the lungs and causes chronic coughs, fever, and weight loss. The disease is a massive burden on health systems worldwide, costing the world over $21 billion a year and being responsible for approximately two million deaths annually. Efforts to rein in the malady have been hindered by the HIV epidemic, the spread of antibiotic resistance and the fact that the most common diagnostic techniques for TB are decades old. The bacteria can develop antibiotic resistance in part due to the presence of an enzyme named BlaC that breaks down the structure of many common antibiotics.
A team led by Yunfeng Cheng exploited this apparent strength by designing a molecule that is activated by BlaC and attaches to another enzyme named DprE1. The probe, named CDG-DNB3, produces a bright green color within one hour after activation by BlaC, allowing for rapid labeling of both single and multiple Mtb bacteria. The authors tested the probe in a weakened variant of TB named BCG and found the probe could distinguish between live bacteria and dead bacteria, as well as between BCG and 43 related nontuberculosis mycobacterial species.
Chang et al. also created a chip using microfluidics technology that accurately counted bacteria within BCG samples labeled with CDG-DNB3 as they passed through a detection window.
Source: American Association for the Advancement of Science
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.