An analysis of the genome of a superbug has yielded crucial, novel information that could aid efforts to counteract the bacteriums resistance to an antibiotic of last resort. The results of the research led by scientists from The University of Texas Health Science Center at Houston (UTHealth) are published in the Sept. 8 issue of the New England Journal of Medicine.
The genome of a superbug has been unlocked by scientists at The University of Texas Health Science Center at Houston (UTHealth) Medical School. From left to right are: Jung H. Roh, PhD; Diana Panesso, PhD; Truc T. Tran, Pharm D; Barbara Murray, MD; Cesar Arias, MD, PhD; and Lorena Diaz.
An analysis of the genome of a superbug has yielded crucial, novel information that could aid efforts to counteract the bacteriums resistance to an antibiotic of last resort. The results of the research led by scientists from The University of Texas Health Science Center at Houston (UTHealth) are published in the Sept. 8 issue of the New England Journal of Medicine.
Superbugs are bacteria that are resistant to multiple antibiotics and represent one of the most challenging health problems of the 21st century. Infections caused by these bacteria can lead to longer illnesses, extended hospital stays and in some instances death. Antibiotic resistance is on the rise and alternative treatments are frequently suboptimal.
Researchers focused on a superbug called vancomycin-resistant enterococci (VRE), which is an intestinal bacterium that is resistant to multiple antibiotics, particularly vancomycin, a drug that has been used for treatment of potentially lethal hospital-associated infections.
"It is the second most common bacterium isolated from patients in U.S. hospitals after staphylococci," says Cesar Arias, MD, PhD, the studys lead author and principal investigator. He is an associate professor of medicine at the UTHealth Medical School.
"The problem is that VRE has become so resistant that we dont have reliable antibiotics to treat it anymore," Arias says. "Daptomycin is one of the few antibiotics left with activity against VRE and is usually used as a drug of last resort. Additionally, this particular superbug is frequently seen in debilitated patients such as those in critical care units, receiving cancer treatment and patients receiving transplants, among others; therefore the emergence of resistance during therapy is a big issue."
VRE itself can develop resistance to daptomycin during treatment. To find out why, researchers compared the genomes of bacterial samples drawn from the blood of a patient with VRE bloodstream infection receiving daptomycin. The bacterium developed daptomycin resistance and the patient subsequently died.
By comparing the genetic makeup of the bacterium before and after it developed resistance to daptomycin, the researchers were able to identify changes in genes directly tied to antibiotic resistance. "Our research provides direct substantiation that changes in two bacterial genes are sufficient for the development of daptomycin resistance in VRE during therapy," Arias said.
Barbara Murray, MD, coauthor and director of the Division of Infectious Diseases at the UTHealth Medical School, said, "These results lay the foundation for understanding how bacteria may become resistant to daptomycin, which opens immense possibilities for targeting the functions encoded by these mutated genes. This would be a step toward the development of much needed new drugs. That is, once we understand the exact mechanism for resistance, one can start to develop strategies that block or attack the resistance mechanism."
Murray, holder of the J. Ralph Meadows Professorship in Internal Medicine, added, "This study identified genes never before linked to antibiotic resistance in enterococci. The genomic approach used in the study is very powerful and was able to pinpoint exactly the specific genes and mutations within them that resulted in the failure of daptomycin (CUBICIN®) therapy and contributed to the fatal outcome of the patient."
Arias laboratory is doing additional research needed to determine the precise mechanisms by which the gene changes allow the bacterium to defeat the antibiotic. "There are mutations that appear to alter the bacterial cell envelope, which is the target of the antibiotic. The modifications brought about by the gene mutations may change the cell envelope to avoid the killing by these antibiotics. We believe these changes are a general mechanism by which bacteria protect themselves," Arias said.
Herbert DuPont, MD, holder of the Mary W. Kelsey Distinguished Professorship in the Medical Sciences and director of the Center for Infectious Diseases at The University of Texas School of Public Health, says, "Twenty years ago antibiotic-resistant bacteria more often caused hospital-acquired infections in people with underlying illness or advanced age. Now, resistant bacteria are often seen in the community in otherwise healthy people, making treatment very complicated."
The study titled "Genetic Basis for In Vivo Daptomycin Resistance in Enterococci" received support from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.