Chronic hepatitis C virus infections are among the most common reasons for liver transplants. Because existing viruses also infect the new liver, the immune system is highly active there. Despite this, the new organ is not rejected, as scientists from the Helmholtz Zentrum München and the Technische Universität München (TUM) have now discovered. The long-term stimulation of the innate immune system by the virus actually increases the probability of tolerance.
Professor Ulrike Protzer and Dr. Felix Bohne investigate the results of the blood samples of HCV-infected transplant patients. Photo courtesy of E. Mitterwallner/TUM.
Chronic hepatitis C virus infections are among the most common reasons for liver transplants. Because existing viruses also infect the new liver, the immune system is highly active there. Despite this, the new organ is not rejected, as scientists from the Helmholtz Zentrum München and the Technische Universität München (TUM) have now discovered. The long-term stimulation of the innate immune system by the virus actually increases the probability of tolerance.
More than 150 million people throughout the world suffer from chronic infection with the hepatitis C virus (HCV), which causes massive damage to the liver. Advanced liver diseases often necessitate liver transplants. In the new clinical study Dr. Felix Bohne and his colleagues studied together with professor Alberto Sánchez-Fueyo from King’s College London 34 hepatitis C patients at the Liver Unit of the University Hospital Clínic de Barcelona who had received new livers.
The researchers had two objectives here: first, they wanted to gain a better understanding of the mechanisms that enable the body’s own immune system to tolerate the new organ despite the HCV infection; second, they were looking for factors that could act as biomarkers for tolerance in the patients.
“If tolerance could be reliably predicted based on certain markers, many patients could stop taking immunosuppressants after a certain period of time,” explains Bohne, lead scientist of the study. Patients must take these strong drugs after transplants. They suppress the immune system so that the body does not identify the new organ as foreign and reject it. For patients with hepatitis C, this is a particular burden, as they need a stable immune system after the transplant to control their chronic HCV infection.
During the study, the patients stopped taking the immunosuppressants. They were observed for twelve months to see which of them could also tolerate the new organ without the drugs, and which of them did not. The scientists took liver and blood samples from the patients prior to and after the cessation of the drugs. Detailed immunological tests on these patient samples were carried out under the leadership of professor Ulrike Protzer of the Immunmonitoring Platform at the Institute of Virology. The scientists compared the patients with each other and looked for any differences that arose in tolerant patients only.
And the scientists struck gold: a certain group of genes was very active only in the livers of tolerant patients. The genes in question belonged to the type I interferon system, which targets viruses like HCV as part of the innate immune system. As the results showed, an anti-viral mechanism does actually enable the patients to better tolerate a foreign organ.
Protzer provides a possible explanation for this: “When the interferon system is constantly activated as is the case in some chronically-infected patients, it downregulates other immune reactions in order to protect the body. This state could act like a natural immunosuppressant and reduce the rejection of the organ.”
In addition to the genes of the type I interferon system, a second factor was considered as a possible marker. This was discovered by the researchers in a previous study on liver recipients who did not have a HCV infection. Patients were very likely to be tolerant if they had a certain ratio of two different subgroups of immune cells in their blood. This ratio was also a reliable predictor of tolerance in the new study involving HCV patients.
Dr. Tanja Bauer and Carolina Russo from the Immunmonitoring Platform at the Helmholtz Zentrum München were also involved in the study as cooperation partners. Bohne was awarded a DFG (German Research Foundation) grant for his research work.
Reference: Felix Bohne, María-Carlota Londoño, Carlos Benítez, Rosa Miquel, Marc Martínez-Llordella, Carolina Russo, Cecilia Ortiz, Eliano Bonaccorsi-Riani, Christian Brander, Tanja Bauer, Ulrike Protzer, Elmar Jaeckel, Richard Taubert, Xavier Forns, Miquel Navasa, Marina Berenguer, Antoni Rimola, Juan-José Lozano, und Alberto Sánchez-Fueyo, HCV-induced immune responses influence the development of operational tolerance following liver transplantation in humans, Science Translational Medicine, 2014. DOI: 10.1126/scitranslmed.3008793
Source: Technische Universität München / Helmholtz Zentrum München
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.