Surveillance data of antibiotic use are increasingly being used for benchmarking purposes, but there is a lack of studies dealing with how hospital- and patient-related factors affect antibiotic utilization in hospitals. Haug, et al. (2014) sought to identify factors that may contribute to differences in antibiotic use.
Based on pharmacy sales data (2006–2011), use of all antibiotics, all penicillins, and broad-spectrum antibiotics was analysed in 22 health enterprises (HEs). Antibiotic utilization was measured in World Health Organisation defined daily doses (DDDs) and hospital-adjusted (ha)DDDs, each related to the number of bed days (BDs) and the number of discharges. For each HE, all clinical specialties were included and the aggregated data at the HE level constituted the basis for the analyses. Fourteen variables potentially associated with the observed antibiotic use – extracted from validated national databases – were examined in 12 multiple linear regression models, with four different measurement units: DDD/100 BDs, DDD/100 discharges, haDDD/100 BDs and haDDD/100 discharges.
Six variables were independently associated with antibiotic use, but with a variable pattern depending on the regression model. High levels of nurse staffing, high proportions of short (<2 days) and long (>10 days) hospital stays, infectious diseases being the main ICD-10 diagnostic codes, and surgical diagnosis-related groups were correlated with a high use of all antibiotics. University affiliated HEs had a lower level of antibiotic utilization than other institutions in eight of the 12 models, and carried a high explanatory strength. The use of broad-spectrum antibiotics correlated strongly with short and long hospital stays. The researchers say there was a residual variance (30 percent to 50 percent for all antibiotics; 60 percent to 70 percent for broad-spectrum antibiotics) that their analysis did not explain.
The researchers conclude that factors associated with hospital antibiotic use were mostly non-modifiable. By adjusting for these factors, it will be easier to evaluate and understand observed differences in antibiotic use between hospitals. Consequently, the inter-hospital differences can be more confidently acted upon. The residual variation is presumed to largely reflect prescriber-related factors. Their research was published in Antimicrobial Resistance and Infection Control.
Reference: Haug JB, Berild D, Walberg M and Reikvam A. Hospital- and patient-related factors associated with differences in hospital antibiotic use: analysis of national surveillance results. Antimicrobial Resistance and Infection Control 2014, 3:40 doi:10.1186/s13756-014-0040-5
Expanded Screening Protocols Improve Early Detection of Candida auris at Mount Sinai Brooklyn
December 1st 2024Mount Sinai Brooklyn’s expanded Candida auris screening protocols identified more cases, enabling timely isolation and disinfection measures to prevent outbreaks and enhance patient safety in hospital settings.
Pioneering Advances in Sterilization: The Future of Infection Control
November 28th 2024Germitec, STERIS, ASP, and Zuno Medical are pioneering sterilization advancements with groundbreaking technologies that enhance SPD workflows, improve patient safety, and redefine infection control standards.
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
Expanded Screening Protocols Improve Early Detection of Candida auris at Mount Sinai Brooklyn
December 1st 2024Mount Sinai Brooklyn’s expanded Candida auris screening protocols identified more cases, enabling timely isolation and disinfection measures to prevent outbreaks and enhance patient safety in hospital settings.
Pioneering Advances in Sterilization: The Future of Infection Control
November 28th 2024Germitec, STERIS, ASP, and Zuno Medical are pioneering sterilization advancements with groundbreaking technologies that enhance SPD workflows, improve patient safety, and redefine infection control standards.
Genomic Surveillance A New Frontier in Health Care Outbreak Detection
November 27th 2024According to new research, genomic surveillance is transforming health care-associated infection detection by identifying outbreaks earlier, enabling faster interventions, improving patient outcomes, and reducing costs.
2 Commerce Drive
Cranbury, NJ 08512