Immune System Circuitry That Kills Malaria in Mosquitoes is Identified

Article

Researchers at the Johns Hopkins Malaria Research Institute have determined the function of a series proteins within the mosquito that transduce a signal that enables the mosquito to fight off infection from the parasite that causes malaria in humans. Together, these proteins are known as immune deficiency (Imd) pathway signal transducing factors, are analogous to an electrical circuit. As each factor is switched on or off it triggers or inhibits the next, finally leading to the launch of an immune response against the malaria parasite. The study was published June 7 in the journal PLoS Pathogens.

The latest study builds upon earlier work of the research team, in which they found that silencing one gene of this circuit, Caspar, activated Rel2, an Imd pathway transcription factor of the Anopheles gambiae mosquito. The activation of Rel2 turns on the effectors TEP1, APL1 and FBN9 that kill malaria-causing parasites in the mosquitos gut. More significantly, this study discovered the Imd pathway signal transducing factors and effectors that will mediate a successful reduction of parasite infection at their early ookinete stage, as well as in the later oocyst stage when the levels of infection were similar to those found in nature.

Identifying and understanding how all of the players work is crucial for manipulating the Imd pathway as an invention to control malaria. We now know which genes can be manipulated through genetic engineering to create a malaria resistant mosquito, says George Dimopoulos, PhD, professor in the Department of Molecular Microbiology and Immunology at the Johns Hopkins Bloomberg School of Public Health.

To conduct the study, Dimopouloss team used a RNA interference method to knock down the genes of the Imd pathway. As the components were inactivated, the researchers could observe how the mosquitos resistance to parasite infection would change.

Imagine a string of Christmas lights or other circuit that will not work when parts arent aligned in the right sequence. That is how we are working with the mosquitos immune system, explains Dimopolous. We manipulate the molecular components of the mosquitos immune system to identify the parts necessary to kill the malaria parasites.

Malaria kills more than 800,000 people worldwide each year. Many are children.

The authors of Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action are Lindsey S. Garver, Ana C. Bahia, Suchismita Das, Jayme A. Souza-Neo, Jessica Shiao, Yuemei Dong and George Dimopoulos.

The research was funded by the Johns Hopkins Malaria Research Institute.

Related Videos
Set of white bottles with cleaning liquids on the white background. (Adobe Stock 6338071172112 by zolnierek)
Medical investigators going over data. (AdobeStock 589197902 by Wasan)
CDC logo is seen on a laptop. (Adobe Stock 428450603 by monticellllo)
Association for the Health Care Environment (Logo used with permission)
COVID-19 germs, fungi, bacteria objects. (Adobe Stock 584704860 by chawalit)
Ambassador Deborah Birx, , speaks with Infection Control Today about masks in schools and the newest variant.
mRNA technology  (Adobe Stock 485886181 by kaptn)
Ambassador Deborah Birx, MD
Woman lying in hospital bed (Adobe Stock, unknown)
Related Content