MRSA Strain Gained Dominance with Help from Skin Bacteria

Article

Scientists believe they have an explanation for how the most common strain of methicillin-resistant Staphylococcus aureus (MRSA) rapidly rose to prominence. Research published in mBio®, the online open-access journal of the American Society for Microbiology, suggests that the strain recently acquired a number of genes from common skin bacteria that allow it to grow and thrive on the skin where other strains of MRSA cannot.

"Over the past 15 years, methicillin-resistant Staphylococcus aureus has become a major public health problem. It is likely that adaptations in specific MRSA lineages drove the spread of MRSA across the United States and allowed it to replace other, less-virulent S. aureus strains," says Paul Planet of Columbia University, the lead author on the study.

Since it was first identified in the late 1990s the USA300 strain of MRSA has undergone an extremely rapid expansion across the United States. It is now the predominant cause of community-acquired MRSA skin and soft tissue infections and has been implicated in MRSA outbreaks among professional football teams. The strain is genetically distinguished from other strains by a cluster of genes known as the arginine catabolic mobile element (ACME.)

"Using phylogenetic analysis, we showed that the modular segments of ACME were assembled into a single genetic locus in Staphylococcus epidermidis (a relatively harmless bacterium typically found on human skin) and then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event that coincided with the emergence and spread of this strain" says Planet.

The researchers identified one ACME gene in particular, called speG, that conferred on USA300 strains the ability to withstand high levels of polyamines, compounds produced by the skin that are toxic to other strains of MRSA. Polyamine tolerance also gave MRSA multiple advantages including enhanced biofilm formation, adherence to host tissues and resistance to certain antibiotics, according to the study.

"We suggest that these properties gave USA 300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone," says Planet.

Related Videos
NFID Medical Director, Robert H. Hopkins, Jr., MD  (Photo courtesy by Evoke Kyne)
Shelley Summerlin-Long, MPH, MSW, BSN, RN, senior quality improvement leader, infection prevention, UNC Medical Center, Chapel Hill, North Carolina
Infection Control Today Infection Intel: Staying Ahead with Company updates and product Innovations.
An eye instrument holding an intraocular lens for cataract surgery. How to clean and sterilize it appropriately?   (Adobe Stock 417326809By Mohammed)
Christopher Reid, PhD  (Photo courtesy of Christopher Reid, PhD)
Paper with words antimicrobial resistance (AMR) and glasses.   (Adobe Stock 126570978 by Vitalii Vodolazskyi)
3D illustration: Candida auris   (Adobe Stock 635576411 By Niamh )
 MIS-C (Adobe Stock 350657530 by Bernard Chantal)
Set of white bottles with cleaning liquids on the white background. (Adobe Stock 6338071172112 by zolnierek)
Related Content