Treatments against hepatitis C virus have only been partially successful. A major problem is that antivirals generate drug resistance. Now Seong-Wook Lee of Dankook University, Yongin, Republic of Korea and his collaborators have developed agents that bind to the business end of a critical protein, disabling it so successfully that no resistance has arisen. The research is published in the June 2013 issue of the Journal of Virology.
The target protein for the new agents is the NS5B replicase protein, which is the central catalytic enzyme in HCV replication. The researchers developed "RNA aptamers" which bind tightly to the part of that protein that performs the catalysis, disabling the replicase. Aptamers are short nucleic acids or peptides that provide the same level of recognition and binding ability that is common to antibodies.
The aptamers inhibited HCV replication without generating escape mutants, says Lee. Moreover, the aptamers inhibited diverse genotypes of HCV, neither causing toxicity nor inducing innate immunity, he says. Lee notes that in the study, therapeutic quantities of ligand-conjugated aptamer penetrated the liver tissue in the mice, raising the likelihood that therapeutically effective quantities could ultimately be achieved in HCV patients.
Roughly 170 million people worldwide are infected with HCV, says Lee, and it is the major cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. There is as yet "no efficient and specific single regimen against HCV," says Lee. Current treatments are associated with many side effects, partly because rapid generation of drug-resistant virus has forced clinicians to use combinations of several drugs, resulting in greater numbers of side effects in patients than if a single agent could be used. And even with the drug combinations only some patients can generate a sustained antiviral response.
Reference: C.H. Lee, Y.J. Lee, S.-W. Lee et al. Inhibition of hepatitis C virus (HCV) replication by specific RNA aptamers against HCV NS5B RNA replicase. J. Virol. June 2013 87:7064-7074; published ahead of print 17 April 2013 ,doi:10.1128/JVI.00405-13)
Source: American Society for Microbiology (ASM)
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.