A new discovery by scientists could help combat the spread of sleeping sickness. Insights into how the parasites that cause the disease are able to communicate with one another could help limit the spread of the infection. The findings suggest that new drugs could be designed to disrupt the flow of messages sent between these infectious microorganisms.
This is a microscopic image of the parasite that causes sleeping sickness.
A new discovery by scientists could help combat the spread of sleeping sickness. Insights into how the parasites that cause the disease are able to communicate with one another could help limit the spread of the infection. The findings suggest that new drugs could be designed to disrupt the flow of messages sent between these infectious microorganisms.
Sleeping sickness so named because it disrupts sleep patterns is transmitted by the bite of the tsetse fly, and more than 69 million people in Africa are at risk of infection. Untreated, it can damage the nervous system, leading to coma, organ failure and death.
During infection, the parasites known as African trypanosomes multiply in the bloodstream and communicate with each other by releasing a small molecule. When levels of this molecule become sufficiently high, this acts as a signal for the parasites to stop replicating and to change into a form that can be picked up by biting flies and spread.
A team led by researchers at the University of Edinburgh were able to uncover key components of the parasites' messaging system. They used a technique known as gene silencing, to identify those genes that are used to respond to the communication signals and the mechanisms involved.
Professor Keith Matthews, of the University of Edinburgh's School of Biological Sciences, who led the research, notes, "Parasites are adept at communicating with one another to promote their survival in our bodies and ensure their spread but by manipulating their messages, new ways to combat these infections are likely to emerge."
The research, carried out in collaboration with the University of Dundee, was published in the journal Nature, and funded by the Wellcome Trust.
Â
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.