The proportion of women infected with HIV has been on the rise for a decade; in sub-Saharan Africa, women constitute 60 percent of people living with disease. While preventive drugs exist, they have often proven ineffective, especially in light of financial and cultural barriers in developing nations.
A new intravaginal ring filled with an anti-retroviral drug could help. Developed with support from the National Institute of Allergy and Infectious Diseases by Northwestern University visiting associate professor Patrick Kiser, the ring is easy to use, long lasting, and recently has demonstrated a 100 percent success rate protecting primates from the simian immunodeficiency virus (SHIV). The device will soon undergo its first test in humans.
After 10 years of work, we have created an intravaginal ring that can prevent against multiple HIV exposures over an extended period of time, with consistent prevention levels throughout the menstrual cycle, says Kiser, an expert in intravaginal drug delivery who joined Northwestern from the University of Utah, where the research was conducted.
Kiser is a new faculty member in Northwesterns McCormick School of Engineerings Department of Biomedical Engineering and visiting associate professor of obstetrics and gynecology in the Feinberg School of Medicine.
The research was published Sept. 16 in the Proceedings of the National Academy of Sciences (PNAS).
Previous studies have demonstrated that antiviral drugs can prevent HIV infection, but existing methods for delivering the drug fall short. Pills must be taken daily and require high doses; vaginal gels that must be applied prior to each sex act are inconvenient, yielding poor usage rates.
The new ring is easily inserted and stays in place for 30 days. And because it is delivered at the site of transmission, the ring known as a TDF-IVR (tenofovir disoproxil fumarate intravaginal ring) utilizes a smaller dose than pills.
The device contains powdered tenofovir, an anti-retroviral drug that is taken orally by 3.5 million HIV-infected people worldwide, but that has not previously been studied topically. But the rings strength stems from its unique polymer construction: its elastomer swells in the presence of fluid, delivering up to 1,000 times more of the drug than current intravaginal ring technology, such as NuvaRing, which are made of silicon and have release rates that decline over time.
The upcoming clinical trial, to be conducted in November at Albert Einstein College of Medicine in New York, will evaluate the ring in 60 women over 14 days. The trial will assess the rings safety and measure how much of the drug is released and the properties of the ring after use.
Other drugs could potentially be integrated into the ring, such as contraceptives or antiviral drugs to prevent other sexually transmitted infections a feature that could increase user rates, Kiser says.
The flexibility to engineer this system to deliver multiple drugs and change release rates is extraordinary and could have a significant impact on womens health, he says.
The paper is titled Intravaginal Ring Eluting Tenofovir Disoproxil Fumarate Completely Protects Macaques from Multiple Vaginal Simian-HIV Challenges.
Other authors include first authors James M. Smith of the Centers for Disease Control (CDC) and Prevention and Rachna Rastogi of the University of Utah; Janet M. McNicholl, R. Michael Hendry, Chuong T. Dinh, and Amy Martin of the CDC; Ryan S. Teller and Umadevi Nagaraja of the University of Utah; and Pedro M. M. Mesquita and Betsy C. Herold of Albert Einstein College of Medicine.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.