Researchers have identified a new means to eradicate malaria infections by rapidly killing the bloodborne Plasmodium parasites that cause the disease.
Malaria causes up to 3 million deaths each year, predominantly afflicting vulnerable people such as children under five and pregnant women, in tropical regions of Africa, Asia and Latin America. Treatments are available for this disease, but the Plasmodium parasite is fast becoming resistant to the most common drugs, and health authorities say they desperately need new strategies to tackle the disease.
This new potential treatment uses molecules that interfere with an important stage of the parasite's growth cycle and harnesses this effect to kill them. The impact is so acute it kills 90 percent of the parasites in just three hours and all those tested in laboratory samples of infected human blood cells, within 12 hours.
The research was carried out by chemists at Imperial College London and biological scientists from the research institutions Institut Pasteur and CNRS in France. Their work is published in the journal Proceedings of the National Academy of Sciences (PNAS).
Lead researcher Dr. Matthew Fuchter, from Imperial College London, says, "Plasmodium falciparum causes 90 per cent of malaria deaths, and its ability to resist current therapies is spreading dramatically. While many new drugs are in development, a significant proportion are minor alterations, working in the same way as current ones and therefore may only be effective in the short term. We believe we may have identified the parasites 'Achilles' Heel', using a molecule that disrupts many vital processes for its survival and development."
The research has identified two chemical compounds that affect Plasmodium falciparum's ability to carry out transcription, the key process that translates genetic code into proteins. These compounds are able to kill the parasite during the long period of its complex life cycle while it inhabits the blood-stream. This is in contrast to the majority of antimalarial drugs, whose action is limited to shorter stages of Plasmodium's life cycle.
"One particularly exciting aspect of this discovery is this new molecule's ability to rapidly kill off all traces of the parasite, acting at least as fast as the best currently available antimalarial drug," says Fuchter.
Initial tests also showed the molecules were able to kill strains of Plasmodium that have developed a resistance to current treatments, although the scientists say more experiments are needed to confirm these results.
The scientists hope to refine these molecules, improving their effectiveness and proving this to be a viable strategy for treating malaria in humans. They hope it will lead to the development of an effective malaria cure within the next 10 years.
This research was supported by the New York Pasteur Foundation and the Bill and Melinda Gates Foundation and received funding from the European Research Council (ERC).
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.