New Way to Tap Largest Remaining Pool of Potential New Antibiotics

Article

Scientists are reporting use of a new technology for sifting through the world's largest remaining pool of potential antibiotics to discover two new antibiotics that work against deadly resistant microbes, including the superbugs known as methicillin-resistant Staphylococcus aureus (MRSA). Their report appears in the Journal of the American Chemical Society.

Sean Brady and colleagues explain that an urgent need exists for new medications to cope with microbes that shrug off the most powerful traditional antibiotics. MRSA infections, for instance, are resistant to most known antibiotics. MRSA strikes at least 280,000 people in the U.S. alone every year, and almost 20,000 of those patients die. The typical way of discovering new antibiotics involves identifying and growing new bacteria from soil and other environmental samples in culture dishes in the laboratory. That environmental treasure-trove is the largest remaining potential source of new antibiotics. Researchers then analyze the bacteria to see if they make substances that could be used as antibiotics to kill other microbes. But most bacteria found in nature can't grow in the laboratory. That's why Brady and colleagues took a new approach to this problem.

The researchers removed DNA from soil bacteria that wouldn't grow in the lab. Then, they put this DNA into different bacteria that do grow well in culture dishes, and these bacteria acted like incubators for the new DNA. The approach enabled Brady's team to study the substances made by the soil bacteria's DNA in the lab. With this "metagenomics" method, they identified two new possible antibiotics called fasamycin A and fasamycin B that killed MRSA and vancomycin-resistant Enterococcus faecalis, which also is becoming more resistant to known antibiotics. They also determined how the new antibiotics work. "Metagenomics has the potential to access large numbers of previously inaccessible natural antibiotics," say the researchers.

The researchers acknowledge funding from the National Institutes of Health and the Howard Hughes Medical Institute.

Recent Videos
The CDC’s updated hospital respiratory reporting requirement has added new layers of responsibility for infection preventionists. Karen Jones, MPH, RN, CIC, FAPIC, clinical program manager at Wolters Kluwer, breaks down what it means and how IPs can adapt.
Studying for the CIC using a digital tablet and computer (Adobe Stock 335828989 by NIKCOA)
Infection Control Today's Conversations with the HSPA President, Arlene Bush, CRCST, CER, CIS, SME, DSMD, CRMST
Infection Control Today's Conversations with the HSPA President, Arlene Bush, CRCST, CER, CIS, SME, DSMD, CRMST
Cheron Rojo, BS, FCS, CHL,  CER, CFER, CRCST
Matthias Tschoerner, Dr Sc
Standardizing Cleaning and Disinfection
Concept images of Far-UVC  (Adobe Stock 316993517 by hopenv)
Physicians Sound Alarm: Vaccine Misinformation and Policy Failures Threaten US Public Health
Anna Castillo-Gutierrez, CRCST, CSPDT, CHL, CIS, CFER,  and Maya Luera, CRCST, CIS, CER, CHL
Related Content