NIH Scientists Create Two-Headed Protein to Deplete HIV Reservoir

Article

Scientists at the National Institutes of Health (NIH) have created a protein that awakens resting immune cells infected with HIV and facilitates their destruction in laboratory studies. The protein potentially could contribute to a cure for HIV infection by helping deplete the reservoir of long-lived, latently HIV-infected cells that can start making the virus when a person stops taking anti-HIV drugs. Further studies in animals and people are needed to determine the viability of this approach.

The researchers found that the protein, called VRC07-αCD3, triggered the activation and killing of latently HIV-infected helper T cells when the cells were taken from patients on antiretroviral therapy and then incubated in the lab with the patients' own killer T cells. In addition, the scientists found a monkey-adapted version of the protein to be safe and well-tolerated when given to monkeys infected with a simian form of HIV and receiving antiretroviral therapy. The researchers are now studying the effectiveness of monkey-adapted VRC07-αCD3 in the animals.

The engineered protein has two ends: one activates T cells by binding to a surface molecule called the CD3 receptor, and the other--based on an antibody called VRC07--powerfully binds to more than 90 percent of HIV strains. VRC07-αCD3 facilitates the killing of latently HIV-infected cells in three steps. First, the CD3-binding end attaches to a resting, HIV-infected helper T cell, activating the cell so it starts making HIV and displaying pieces of virus on its surface. Next, the HIV-binding end of the protein latches onto those pieces of virus while the CD3-binding end attaches to a killer T cell, activating it and bringing it close to the helper T cell. Finally, the activated killer T cell destroys the HIV-infected helper T cell.

A team of scientists at the Vaccine Research Center (VRC) of the National Institute of Allergy and Infectious Diseases, part of NIH, created VRC07-αCD3 under the leadership of VRC Director John R. Mascola, MD; former VRC director Gary J. Nabel, MD, PhD; and Richard A. Koup, MD, VRC deputy director and chief of its immunology laboratory.

Reference: Pegu A, et al. Activation and lysis of human CD4 cells latently infected with HIV-1. Nature Communications DOI: 10.1038/ncomms9447 (2015).

Source: NIH/National Institute of Allergy and Infectious Diseases
 

Related Videos
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Rare Disease Month: An Infection Control Today® and Contagion® collaboration.
Vaccine conspiracy theory vector illustration word cloud  (Adobe Stock 460719898 by Colored Lights)
Rare Disease Month: An Infection Control Today® and Contagion® collaboration.
Infection Control Today Topic of the Month: Mental Health
Infection Control Today's topic of the month: Mental Health
Related Content