Infections caused by drug-resistant bacteria are a global public health threat causing serious illness and even death. Strains of the bacterium Enterococcus faecium (E. faecium) are generally harmless in healthy people, but can be pathogenic in immunocompromised or severely ill patients. E. faecium strains from hospital environments have acquired resistance to commonly used antibiotics, including those used to treat serious infections, making these infections especially challenging to treat.
In a study published today in Genome Research, researchers conducted a survey of 20 municipal wastewater plants in England, and isolated drug-resistant E. faecium from all sites in both untreated and treated wastewater plants except three, which use ultraviolet light disinfection. Importantly, drug-resistant E. faecium counts were significantly higher in untreated wastewater from plants that were direct recipients of hospital sewage. A genomic comparison of E. faecium isolates from wastewater and bloodstream isolates of infected patients revealed two major lineages, with ampicillin-resistant bacteria in clade A1 and A2 and vancomycin-resistant bacteria exclusive to clade A1. Further genetic analysis revealed the presence of shared antibiotic, metal, and biocide resistance genes in clade A1 isolates from bloodstream, hospital sewage, and municipal wastewater.
This study demonstrates close genetic relatedness of drug-resistant E. faecium isolates released into the environment with those that cause serious human disease. Further research is needed to determine the public health implications of exposure to healthcare- and waste-associated pathogens. Terminal ultraviolet light disinfection of wastewater is one solution that would reduce environmental contamination with drug-resistant bacteria.
Researchers from the University of Cambridge, Public Health England, Addenbrooke's Hospital, Wellcome Trust Sanger Institute, London School of Hygiene and Tropical Medicine, British Society for Antimicrobial Chemotherapy, University of Oslo, and Mahidol University contributed to this work. The study was funded by grants from the Health Innovation Challenge Fund, Wellcome Trust Research Training Fellowship, Wellcome Trust Sir Henry Postdoctoral Fellowship, and European Research Council.
The manuscript will be published online ahead of print on 21 Mar 2019. Its full citation is as follows: Gouliouris T, Raven K, Moradigaravand D, Ludden C, Coll F, Blane B, Naydenova P, Horner C, Brown N, Corander J, Limmathurotsakul D, Parkhill J, and Peacock S. 2019. Detection of vancomycin-resistant Enterococcus faecium hospital-adapted lineages in municipal wastewater treatment plants indicates widespread distribution and release into the environment. Genome Research doi: 10.1101/gr.232629.119
Source: Cold Spring Harbor Laboratory Press
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.