PolyU's new invention utilizes an optical method called upconversion luminescence resonance energy transfer (LRET) process for ultrasensitive virus detection. It involves simple operational procedures, significantly reducing its testing duration from around one to three days to two to three hours, making it more than 10 times quicker than traditional clinical methods. Its cost is around HK$20 per sample, which is 80 percent lower than traditional testing methods. The technology can be widely used for the detection of different types of viruses, shedding new light on the development of low-cost, rapid and ultrasensitive detection of different viruses.
The PolyU research team led by Dr. Jianhua Hao, associate professor in the Department of Applied Physics (right) and Dr. Mo Yang, associate professor in the Interdisciplinary Division of Biomedical Engineering (left) have developed a novel nano biosensor for rapid detection of flu and other viruses. Courtesy of Hong Kong Polytechnic University
PolyU's new invention utilizes an optical method called upconversion luminescence resonance energy transfer (LRET) process for ultrasensitive virus detection. It involves simple operational procedures, significantly reducing its testing duration from around 1-3 days to 2-3 hours, making it more than 10 times quicker than traditional clinical methods. Its cost is around HK$20 per sample, which is 80% lower than traditional testing methods. The technology can be widely used for the detection of different types of viruses, shedding new light on the development of low-cost, rapid and ultrasensitive detection of different viruses.
Traditional biological methods for flu virus detection include genetic analysis -- reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) used in immunology. However, RT-PCR is expensive and time-consuming while the sensitivity for ELISA is relatively low. Such limitations make them difficult for clinical use as a front-line and on-site diagnostic tool for virus detection, paving the way for PolyU's development of the new upconversion nanoparticle biosensor which utilizes luminescent technique in virus detection.
PolyU's researchers have developed a biosensor based on luminescent technique which operates like two matching pieces of magnet with attraction force. It involves the development of upconversion nanoparticles (UCNPs) conjugated with a probe oligo whose DNA base pairs are complementary with that of the gold nanoparticles (AuNPs) flu virus oligo. Given the complementary nature of the DNA base pairs of the UCNPs probe oligo and AuNPs flu virus oligo, they work like two matching pieces of magnet, which would be drawn together due to attraction force. This process is also called oligo hybridization. Upon being illuminated by a portable near-infrared laser pen, the UCNPs emit eye-visible green light while the AuNPs would absorb the green light. One can easily quantify the concentration of the targeted flu virus by measuring the decrease in the green light intensity.
Initially, PolyU researchers have utilized upconversion LRET for ultrasensitive virus detection in liquid phase system. The research team has further improved the sensitivity of the luminescent detection method by utilizing a solid phased nanoporous membrane system (NAAO) for virus detection. As NAAO membrane consists of many hollow channels, they allow more space for oligo hybridization to take place, significantly increasing its sensitivity by more than 10 folds compared to the liquid phase system, proven by clinical detection using inactivated virus samples.
Not only is the design and operation of PolyU's invention simple, it does not require expensive instruments and sophisticated operational skills, with its sensitivity comparable to traditional clinical methods. In comparison to conventional downconversion luminescent technique, it causes low damage to genetic materials and does not induce background fluorescence. In addition, since each virus has a unique genetic sequence, researchers would be able to design a complementary probe once the genetic sequence of the targeted virus is known. In other words, the upconversion LRET technology can be widely used for the detection of different types of viruses simply by modifying the UCNPs capture probe.
The related results have been recently published in ACS Nano and Small, two leading journals in nano material research. With the support from the Innovation and Technology Support Program, the research team will continue to enhance the nano biosensor for rapid virus detection, which includes increasing its sensitivity and specificity, and developing a matrix for detection of multiple flu viruses on a single testing platform.
Source: Hong Kong Polytechnic University
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.