Prediction of Seasonal Flu Strains Improves Chances of Universal Vaccine

Article

Researchers have determined a way to predict and protect against new strains of the flu virus, in the hope of improving immunity against the disease.

Influenza is a rapidly spreading acute respiratory disease. Worldwide, annual seasonal epidemics of the flu result in 3 million to 5 million cases of severe illness, and up to 500 000 deaths. A newly emerged virus can spread across 74 countries in two months.

The study led by the University of Melbourne with Monash University and international colleagues has found how to predict and potentially stop the mutating cells of the influenza virus, which escape our bodies white blood cells (T cell) immunity.
 
Senior author, associate professor Katherine Kedzierska from the Department of Microbiology and Immunology at the University of Melbourne said the finding may lead to a new universal influenza vaccine to better protect against both seasonal and pandemic outbreaks.

This research, published in PNAS today, will also help researchers understand T cell immunity against other viral infections such as HIV, hepatitis C and tumors.

The introduction of a new influenza strain into human circulation leads to a rapid global spread of the virus due to minimal antibody immunity, Kedzierska says. White blood cells called T cells are highly efficient in fighting influenza virus infection. Thus, established T cell immunity toward particular viral regions can provide universal immunity against distinct seasonal and pandemic influenza strains. However, influenza viruses can mutate their genes to escape efficient T cells. This constitutes a major problem for a design of a universal vaccine."

In the current paper, researchers have unraveled how influenza viruses evade T cell immunity by introducing specific mutations within the viral proteins.

Professor Peter Doherty, a lead author of the study from the University of Melbourne said predicting and designing vaccines to protect against such mutants can promote T cell immunity.

The studies suggested that an influenza vaccine that targets T cells and recognizes distinct virus strains could provide universal immunity against any future influenza strain, he says.

The work was done in collaboration with professor Stephen Turner from Melbourne University and Professor Jamie Rossjohn of Monash University and funded by the NHMRC.

Newsletter

Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.

Recent Videos
In a recent discussion with Infection Control Today® (ICT®), study authors Brenna Doran PhD, MA, hospital epidemiology and infection prevention for the University of California, San Francisco, and a coach and consultant of infection prevention; Jessica Swain, MBA, MLT, director of infection prevention and control for Dartmouth Health in Lebanon, New Hampshire; and Shanina Knighton, associate professor at Case Western Reserve University School of Nursing and senior nurse scientist at MetroHealth System in Cleveland, Ohio, shared their insights on how the project evolved and what the findings mean for the future.
 Futuristic UV Sanitizer with Sleek Design on a white background.  (Adobe Stock 1375983522 by Napa)
Dirty white towels on the floor used to clean up orange or red liquid. (Image credit AI by Adobe Stock)