Scientists at the University of Queensland and the University of California San Francisco have found a new way to inhibit the growth of the bacterium that causes tuberculosis (TB). UQ School of Chemistry and Molecular Biosciences deputy head professor James De Voss said the discovery held promise for the development of treatments.
This image shows Mycobacterium tuberculosis. Courtesy of Janice Haney Carr/Centers for Disease Control and Prevention
Scientists at the University of Queensland and the University of California San Francisco have found a new way to inhibit the growth of the bacterium that causes tuberculosis (TB). UQ School of Chemistry and Molecular Biosciences deputy head professor James De Voss said the discovery held promise for the development of treatments.
The research team, led by Professor Paul Ortiz de Montellano in the U.S., investigated the impact of compounds related to cholesterol on the tuberculosis-causing bacterium Mycobacterium tuberculosis. Cholesterol is known to affect the virulence and infectivity of TB.
"What Paul's team and our team have shown is that if you give this bacterium modified cholesterol instead, then it can't use it as its energy source and so it stops growing," De Voss said. "Interestingly, we don't quite understand why this happens. Our discovery suggests a new way in which we can robustly inhibit growth of the TB bacterium."
TB is a highly infectious lung disease that kills one person every 21 seconds. There were 9.6 million new cases of TB in 2014, resulting in 1.5 million deaths. One in three people globally is infected with TB, with the bulk of the disease burden falling on developing countries.
De Voss said the scale of the threat, compounded by the emergence of increasingly drug-resistant strains of bacteria, meant it was vital to find new ways to combat tuberculosis.
The team at UQ, including postdoctoral research fellow Dr. Siew Hoon Wong, was responsible for synthesizing inhibitors of the enzymes used to modify the cholesterol by M. tuberculosis.
The research was funded by the National Institutes of Health and is published in the Journal of Biological Chemistry.
De Voss said his team would now partner with School of Chemistry and Molecular Biosciences researcher Dr. Nick West, who is the founder and laboratory head of the UQ Tuberculosis Research Laboratory, the only Australian laboratory dedicated to TB microbiology.
Source: University of Queensland
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.