Researchers from the Medical College of Wisconsin, the Children's Research Institute, and the Children's Hospital of Wisconsin have developed a rapid, automated system to differentiate strains of influenza. The related report by Beck et al, "Development of a rapid automated influenza A, influenza B, and RSV A/B multiplex real-time RT-PCR assay and its use during the 2009 H1N1 swine-origin influenza virus (S-OIV) epidemic in Milwaukee, Wisconsin," appears in the January 2010 issue of the Journal of Molecular Diagnostics.
In pandemic infection, such as the present H1N1 influenza outbreak, rapid automated tests are needed in order to make quick and effective public health decisions. Real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) is a sensitive and specific method for identifying flu substrains; however, technician and assay time are significantly longer than less accurate rapid influenza diagnostic tests.
A group led by Dr. Kelly J. Henrickson of the Medical College of Wisconsin have developed rapid semi- and fully-automated multiplex real-time RT-PCR assays to detect influenza A, influenza B, and respiratory syncytial virus (RSV). These assays can successfully detect human H1N1, H3N2, and swine-origin H1N1 viruses as well as distinguish these from influenza B and RSV infections. These assays could test large numbers of samples over a very short time, allowing for a significant decrease in both technician and assay time.
Beck, et al. suggest that "this outbreak demonstrates the importance of having rapid, reliable, sensitive, and specific assays that allow clinicians and public health officials to react quickly and effectively during viral outbreaks."
These studies were funded by the Midwest Respiratory Virus Program Clinical Laboratory.
Endoscopes and Lumened Instruments: New Studies Highlight Persistent Contamination Risks
May 7th 2025Two new studies reveal troubling contamination in both new endoscopes and cleaned lumened surgical instruments, challenging the reliability of current reprocessing practices and manufacturer guidelines.
Happy Hand Hygiene Day! Rethinking Glove Use for Safer, Cleaner, and More Ethical Health Care
May 5th 2025Despite their protective role, gloves are often misused in health care settings—undermining hand hygiene, risking patient safety, and worsening environmental impact. Alexandra Peters, PhD, points out that this misuse deserves urgent attention, especially today, World Hand Hygiene Day.