Research Shows Copper Destroys Norovirus

Article

New research from the University of Southampton shows that copper and copper alloys will rapidly destroy norovirus. The virus can be contracted from contaminated food or water, person-to-person contact, and contact with contaminated surfaces, meaning surfaces made from copper could effectively shut down one avenue of infection.

Professor William Keevil and Sarah Warnes of the University of Southampton.

New research from the University of Southampton shows that copper and copper alloys will rapidly destroy norovirus. The virus can be contracted from contaminated food or water, person-to-person contact, and contact with contaminated surfaces, meaning surfaces made from copper could effectively shut down one avenue of infection.

Worldwide, norovirus is responsible for more than 267 million cases of acute gastroenteritis every year. There is no specific treatment or vaccine, and outbreaks regularly shut down hospital wards and care homes, requiring expensive deep-cleaning, incurring additional treatment costs and resulting in lost working days when staff are infected. Its impact is also felt beyond healthcare, with cruise ships and hotels suffering significant damage to their reputation when epidemics occur among guests.

Professor Bill Keevil, chair in environmental healthcare at the University of Southampton and lead researcher, presented his work at the American Society for Microbiology's 2013 General Meeting last week. The presentation showed norovirus was rapidly destroyed on copper and its alloys, with those containing more than 60 per cent copper proving particularly effective. The contamination model used was designed to simulate fingertip-touch contamination of surfaces.

A copper handrail in use.

As Keevil notes, "Copper alloy surfaces can be employed in high-risk areas such as cruise ships and care homes, where norovirus outbreaks are hard to control because infected people can't help but contaminate the environment with vomiting and diarrhea. The virus can remain infectious on solid surfaces and is also resistant to many cleaning solutions. That means it can spread to people who touch these surfaces, causing further infections and maintaining the cycle of infection. Copper surfaces, like door handles and taps, can disrupt the cycle and lower the risk of outbreaks."

 

Related Videos
Infection Control Today Topic of the Month: Mental Health
Infection Control Today Topic of the Month: Mental Health
Cleaning and sanitizing surfaces in hospitals  (Adobe Stock 339297096 by Melinda Nagy)
Set of white bottles with cleaning liquids on the white background. (Adobe Stock 6338071172112 by zolnierek)
Association for the Health Care Environment (Logo used with permission)
Woman lying in hospital bed (Adobe Stock, unknown)
Photo of a model operating room. (Photo courtesy of Indigo-Clean and Kenall Manufacturing)
Mona Shah, MPH, CIC, FAPIC, Construction infection preventionist  (Photo courtesy of Mona Shah)
UV-C Robots by OhmniLabs.  (Photo from OhmniLabs website.)
CDC  (Adobe Stock, unknown)
Related Content