Researchers Develop Simple Method to Create Natural Antibiotics

Article

Until now, only the intricate machinery inside cells could take a mix of enzyme ingredients, blend them together and deliver a natural product with an elaborate chemical structure such as penicillin. Researchers at UC San Diegos Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences and the University of Arizona have for the first time demonstrated the ability to mimic this process outside of a cell.

A team led by Qian Cheng and Bradley Moore of Scripps was able to synthesize an antibiotic natural product created by a Hawaiian sea sediment bacterium. They did so by combining a cocktail of enzymes, the protein catalysts inside cells, in a relatively simple mixing process inside a laboratory flask. The research paper, along with a companion study describing a similar process achieved at Harvard Medical School with anti-tumor products, is published in the September issue of Nature Chemical Biology.

This study may signal the start of a new era in how drugs are synthesized, said Moore, a professor in the Center for Marine Biotechnology and Biomedicine at Scripps. Assembling all the enzymes together in a single reaction vessel is a different way to make a complex molecule.

While much more work is needed to employ this process on a mass scale, the achievement proves that such synthesis is possible relatively cheaply and easilywithout the use of man-made chemicalsotherwise known as green chemistry.

Most of the medicinal drugs on the market today are made synthetically. Researchers such as Moore and Scripps Oceanographys Bill Fenical have looked to the oceans as rich sources of new natural products to potentially combat diseases such as cancer.

The antibiotic synthesized in Moores laboratory, called enterocin, was assembled in approximately two hours. Such a compound would normally take months if not a year to prepare chemically, according to Moore.

Rather than a eureka moment that led to the breakthrough, Moore said the process was achieved incrementally. The time-consuming work was spent beforehand identifying and preparing the enzymes that would ultimately catalyze the synthesis, also known as assembling the biosynthetic pathway.

Weve been preparing for some time now a biological toolbox, said Moore. In this new process the enzymes become the tools to do the synthesis.

An article in Nature Chemical Biology by Robert Fecik of the University of Minnesota indicated that Moore and co-workers have now taken biosynthetic pathway reconstruction to a new level.

The new research also carries the potential to combine certain natural enzymes to produce new molecules that typically cannot be found in nature with the goal of developing new drugs. Moore calls these unnatural natural products.

Also joining Cheng and Moore in the research were Dario Meluzzi of the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and Longkuan Xiang and Miho Izumikawa of the University of Arizona.

The U.S. National Institutes of Health supported the research.

Source: Scripps Institution of Oceanography at UC San Diego

Recent Videos
Andrea Flinchum, 2024 president of the Certification Board of Infection Control and Epidemiology, Inc (CBIC) explains the AL-CIP Certification at APIC24
Association for Professionals in Infection Control and Epidemiology  (Image credit: APIC)
Lila Price, CRCST, CER, CHL, the interim manager for HealthTrust Workforce Solutions; and Dannie O. Smith III, BSc, CSPDT, CRCST, CHL, CIS, CER, founder of Surgicaltrey, LLC, and a central processing educator for Valley Health System
Jill Holdsworth, MS, CIC, FAPIC, CRCST, NREMT, CHL
Jill Holdsworth, MS, CIC, FAPIC, CRCSR, NREMT, CHL, and Katie Belski, BSHCA, CRCST, CHL, CIS
Baby visiting a pediatric facility  (Adobe Stock 448959249 by Rawpixel.com)
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Related Content