Researchers Discover How Foodborne Bacteria Induces Infected Immune Cells to Sabotage Their Own Defensive Response

Article

Researchers at National Jewish Health have discovered how the virulent foodborne bacteria Listeria monocytogenes induces infected immune cells to sabotage their own defensive response. The studies offer insight into host-pathogen interactions and suggest potential therapeutic targets for food poisoning, tuberculosis and autoimmune diseases.

In the Feb. 15 issue of the Journal of Experimental Medicine, Laurel Lenz, PhD, and his colleagues report that macrophages infected by the bacteria Listeria release interferon-αβ (IFN- αβ), which makes them and nearby immune cells unresponsive to activation signals. This reduces immune resistance to the bacteria, which causes thousands of cases of food poisoning -- and more than 500 deaths -- each year in the United States.

"Listeria appears to benefit by triggering an endogenous pathway of the host that dampens its own immune response," said Lenz. "Our findings suggest that Listeria increases its survival in infected individuals by inducing cross-talk between host interferon signaling pathways."

When patrolling immune-system cells encounter non-pathogenic microbes, they normally engulf and destroy them. However, certain pathogens such as Listeria can grow within immune cells, which then release alarm signals to other nearby cells. One of these alarms is IFN-αβ. IFN-αβ protects host cells from viral infection. However, IFN- also increases growth of Listeria and certain other bacteria.

Lenz and his colleagues showed that IFN-αβ does this by down-regulating expression of receptors for interferon-γ (IFN-γ). With its receptors down-regulated, IFN-γ cannot drive resting macrophages into an activated state that is especially effective against bacterial pathogens inside the cell.

"IFN-αβ acts as a sort of anesthetic to numb the response of immune cells to IFN-γ," said Lenz.

The research highlights the crosstalk that exists between the antibacterial and antiviral arms of the immune response. Lenz's findings demonstrate that IFN-αβ, well known to stimulate antiviral defenses, dampens antibacterial activity as well.

He speculates that this may be a way for the immune system to more efficiently defend against viral pathogens, while avoiding collateral damage caused by an overactive immune cells. In fact, interferon-β, a medication widely used for multiple sclerosis, may do just that. Lenz speculates further that this medication may act in part by down-regulating expression of IFN- γ receptors on myeloid cells, thus reducing the stimulation of autoimmune T cells.

The next step will be to define more precisely how IFN-αβ mediates down-regulation of the IFN-γ receptors, and to determine whether prevention of these effects improves resistance to infection by Listeria and other bacterial pathogens.

 

Related Videos
Jill Holdsworth, MS, CIC, FAPIC, CRCST, NREMT, CHL
Jill Holdsworth, MS, CIC, FAPIC, CRCSR, NREMT, CHL, and Katie Belski, BSHCA, CRCST, CHL, CIS
Baby visiting a pediatric facility  (Adobe Stock 448959249 by Rawpixel.com)
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Related Content