This study by Lanjri, et al. (2017) aims to assess the susceptibility of Acinetobacter baumannii isolates to the antiseptics and disinfectants commonly used, and to the non-approved product. This is a prospective study carried out from February to August 2015, in the Bacteriology department of Mohammed V Military Teaching hospital of Rabat on A.baumannii isolates collected from colonized and/or infected patients and environmental samples. The antiseptics and disinfectants susceptibility testing was assessed using the micromethod validated in our department. The antiseptics and disinfectants studied were 70% ethyl alcohol, chlorhexidine, povidone-iodine, didecyldimethylammonium chloride and a commercial product which was presented as a hospital disinfectant (non-registered product).
Povidone-iodine, 0.5% chlorhexidine digluconate, 70% ethyl alcohol and didecyl dimethyl ammonium chloride in combination with N- (3-aminopropyl) -N-dodecylpropane-1, 3-diamine were effective against all the 81 A.baumannii isolates tested, and their logarithmic reduction ≥ 5 were observed in 100% of the isolates in their undiluted form. The strains isolated from patients were more resistant than environmental strains: at a dilution of ½ for 70% ethyl alcohol (37.77% vs 11.11%, p = 0.007) and at a dilution of 1/10 (100% vs 69.44%, p < 0.001) for povidone iodine. The non-registered product was ineffective with a resistance rate of 96.29% at a dilution of 1/50, 45.67% at a dilution of 1/10 and 13.58% in its purest form.
The researchers say their study revealed the effectiveness of the main disinfectants and antiseptics used in Morocco; three antiseptics tested were effective in their purest form against the 81 A.baumannii isolates. Regarding disinfectants, the results showed an efficacy of didecyl dimethyl ammonium at the recommended use concentration and in its purest form. This study emphasizes the need for using disinfectants and antiseptics in dilutions recommended by the manufacturer because the insufficient dilutions of these products are not effective. The findings also demonstrated an inefficiency of the non-registered product against A.baumanii isolates; however, the non-registered products should be prohibited.
Reference: Lanjri S, et al. In vitro evaluation of the susceptibility of Acinetobacter baumannii isolates to antiseptics and disinfectants: comparison between clinical and environmental isolates. Antimicrobial Resistance & Infection Control. 2017;6:36
Environmental Hygiene: Air Pressure and Ventilation: Negative vs Positive Pressure
December 10th 2024Learn more about how effective air pressure regulation in health care facilities is crucial for controlling airborne pathogens like tuberculosis and COVID-19, ensuring a safer environment for all patients and staff.
Revolutionizing Hospital Cleanliness: How Color Additives Transform Infection Prevention
December 9th 2024Discover how a groundbreaking color additive for disinfectant wipes improved hospital cleanliness by 69.2%, reduced microbial presence by nearly half, and enhanced cleaning efficiency—all without disrupting workflows.
Splash Pads and Waterborne Disease Outbreaks: A 25-Year Perspective Introduction
December 5th 2024A CDC report reveals 25 years of splash pad-linked waterborne outbreaks, highlighting risks from pathogens like Cryptosporidium. Prevention requires better hygiene, water treatment, and public health strategies.
Pioneering Advances in Sterilization: The Future of Infection Control
November 28th 2024Germitec, STERIS, ASP, and Zuno Medical are pioneering sterilization advancements with groundbreaking technologies that enhance SPD workflows, improve patient safety, and redefine infection control standards.
Infection Intel: Revolutionizing Ultrasound Probe Disinfection With Germitec's Chronos
November 19th 2024Learn how Germitec’s Chronos uses patented UV-C technology for high-level disinfection of ultrasound probes in 90 seconds, enhancing infection control, patient safety, and environmental sustainability.