Hepatitis C virus (HCV) infections have increased during the past decade but little is known about geographic clustering patterns. Stopka, et al. (2017) used a unique analytical approach, combining geographic information systems (GIS), spatial epidemiology, and statistical modeling to identify and characterize HCV hotspots, statistically significant clusters of census tracts with elevated HCV counts and rates. The researchers compiled socio-demographic and HCV surveillance data (n = 99,780 cases) for Massachusetts census tracts (n = 1464) from 2002 to 2013. They used a five-step spatial epidemiological approach, calculating incremental spatial autocorrelations and Getis-Ord Gi* statistics to identify clusters. They conducted logistic regression analyses to determine factors associated with the HCV hotspots.
The researchers identified nine HCV clusters, with the largest in Boston, New Bedford/Fall River, Worcester and Springfield (p < 0.05). In multivariable analyses, they found that HCV hotspots were independently and positively associated with the percent of the population that was Hispanic (adjusted odds ratio [AOR]: 1.07; 95% confidence interval [CI]: 1.04, 1.09) and the percent of households receiving food stamps (AOR: 1.83; 95% CI: 1.22, 2.74). HCV hotspots were independently and negatively associated with the percent of the population that were high school graduates or higher (AOR: 0.91; 95% CI: 0.89, 0.93) and the percent of the population in the “other” race/ethnicity category (AOR: 0.88; 95% CI: 0.85, 0.91).
The researchers identified locations where HCV clusters were a concern, and where enhanced HCV prevention, treatment and care can help combat the HCV epidemic in Massachusetts. GIS, spatial epidemiological and statistical analyses provided a rigorous approach to identify hotspot clusters of disease, which can inform public health policy and intervention targeting. Further studies that incorporate spatiotemporal cluster analyses, Bayesian spatial and geostatistical models, spatially weighted regression analyses, and assessment of associations between HCV clustering and the built environment are needed to expand upon our combined spatial epidemiological and statistical methods.
Reference: Stopka TJ, et al. Identifying and characterizing hepatitis C virus hotspots in Massachusetts: a spatial epidemiological approach. BMC Infectious Diseases. 2017;17:294
Outbreak Detection, Patient Protection: The Legal Upside of Genomics in Infection Prevention
May 21st 2025A string of infections following routine knee surgeries in Tennessee has escalated into litigation, raising questions about how—and when—health care facilities should detect outbreaks. As genomic surveillance gains traction in infection prevention, some fear it could increase legal risk. In reality, it may offer hospitals their strongest legal defense.
Silent Saboteurs: Managing Endotoxins for Sepsis-Free Sterilization
Invisible yet deadly, endotoxins evade traditional sterilization methods, posing significant risks during routine surgeries. Understanding and addressing their threat is critical for patient safety.