Researchers at the University of British Columbia have found a new way to block infection from the hepatitis C virus (HCV) in the liver that could lead to new therapies for those affected by this and other infectious diseases.
More than 170 million people worldwide suffer from hepatitis C, the disease caused by chronic HCV infection. The disease affects the liver and is one of the leading causes of liver cancer and liver transplant around the world. HCV is spread by blood-to-blood contact and there is no vaccine to prevent it. Current treatments for the disease are only moderately effective and can cause serious side effects.
As HCV infects a person, it needs fat droplets in the liver to form new virus particles, says François Jean, associate professor in the Department of Microbiology and Immunology and scientific director of the Facility for Infectious Disease and Epidemic Research (FINDER) at UBC. In the process, it causes fat to accumulate in the liver and ultimately leads to chronic dysfunction of the organ.
HCV is constantly mutating, which makes it difficult to develop antiviral therapies that target the virus itself, says Jean. So we decided to take a new approach.
Jean and his team developed an inhibitor that decreases the size of host fat droplets in liver cells and stops HCV from taking residence, multiplying and infecting other cells.
Our approach would essentially block the lifecycle of the virus so that it cannot spread and cause further damage to the liver, says Jean. The teams method is detailed in the journal PLoS Pathogens.
According to Jean, HCV is one of a number of viruses that require fat to replicate in the human body. This new approach to curbing the replication of HCV could translate into similar therapies for other related re-emerging viruses that can cause serious and life threatening infections in humans, such as dengue virus. Dengue is endemic in more than 100 countries, with approximately 2.5 billion people at risk of infection globally. In some countries, Dengue has become the leading cause of child mortality.
The research was supported by the Canadian Institutes of Health Research (CIHR) through grants and scholarships and by the Michael Smith Foundation for Health Research (MSFHR) through its Junior Trainee Award.
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.