Researchers from New Zealand's University of Otago have gained fresh insights into how one of the main viruses that cause cervical cancer evades its hosts' immune systems. Their findings, which are published in the international journal Scientific Reports, suggest that a protein known as E7, produced by a high-risk type of human papillomavirus (HPV16), may be the key player in suppressing the body's immune response to the virus.
While most people with an HPV infection will clear the virus from their bodies within two years, 10-20 per cent of those infected will fail to do so and become at much higher risk of developing cervical cancer.
Around 1,550 women are diagnosed with high-grade pre-malignant cervical cancer in New Zealand, and globally around half a million women are diagnosed with cervical cancer each year. In countries without organized screening programs, cervical cancer is a leading cause of cancer mortality in women.
Study lead author Merilyn Hibma says that exactly how HPV16 suppresses the body's immune responses has remained a matter of debate.
"Our new findings show that E7, in the absence of other HPV16 proteins, is sufficient enough to cause a range of effects on specialized cells normally involved in priming the body's T-cells to combat viral infection," Hibma says.
Further teasing out the mechanisms behind the failure of T-cells to be primed to attack the virus may allow new therapies that enable the body to fight off a persistent HPV infection, she says.
"This knowledge also helps us to understand how cancer cells avoid being detected by the immune system as E7 is also produced by cervical cancer cells. From this we may be able to identify new ways to block cancer suppression of the immune response. This approach is similar to 'checkpoint inhibitors' such as Keytruda and Opdiva."
Source: University of Otago
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.