Using sophisticated detection methods, researchers at the Saint Louis University Institute for Molecular Virology (IMV) have demonstrated the molecular mechanism by which the HIV virus infects, or integrates, healthy cells. The discovery could lead to new drug treatments for HIV.
Although scientists theorized that two ends of the virus DNA must come together inside a healthy cell in order to infect it, until now, investigators have not been able to illuminate the process.
Many biological and structural aspects of HIV integration are undefined, said Sibes Bera, PhD. Therefore, any insight into the molecular mechanism of this process is significant in developing integrase inhibitors.
Integrase, which was discovered by Saint Louis University researchers in 1978, is one of three HIV proteins crucial to the infections survival. The first protein, reverse transcriptase, converts the ribonucleic acid (RNA) in HIV into deoxyribonucleic acid (DNA). Integrase then inserts the HIV DNA into the immune cell's DNA, making it a permanent part of the cell. The third protein, protease, processes viral proteins and is essential to make infectious virus.
Drugs such as AZT and drug combinations (cocktails) exist to inhibit reverse transcriptase and protease. As of yet, there are no drugs to counter integrase.
By using a biophysical methodology known as Fluorescence Resonance Energy Transfer, Bera and his colleagues showed that the integrase holds the two ends of the viral DNA together prior to integration. Once inside the cell, the two viral DNA ends are fused by the integrase to the cells chromosome. The integrated viral DNA allows virus replication. If the two ends of the viral DNA do not come together, infection does not take place. Millions of HIV tainted cells can be launched from a single infected cell.
We will use this technique in our ongoing studies of the effects of drugs in the process of assembly and disassembly of the viral DNA integrase complexes, Bera said.
The findings were published in the journal Biochemistry. The study is Synaptic Complex Formation of Two Retrovirus DNA Attachment Sites by Integrase: A Fluorescence Energy Transfer Study by Bera and his colleagues, Ajaykumar C. Vora, MS, Roger Chiu and Duane P. Grandgenett, PhD, from Institute for Molecular Virology and Tomasz Heyduk, PhD, from department of biochemistry and molecular biology.
Source: Saint Louis University
Â
Â
Â
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.