Researchers Provide Direct Evidence on How HIV Invades Healthy Cells

Article

Using sophisticated detection methods, researchers at the Saint Louis University Institute for Molecular Virology (IMV) have demonstrated the molecular mechanism by which the HIV virus infects, or integrates, healthy cells. The discovery could lead to new drug treatments for HIV.

Although scientists theorized that two ends of the virus DNA must come together inside a healthy cell in order to infect it, until now, investigators have not been able to illuminate the process.

Many biological and structural aspects of HIV integration are undefined, said Sibes Bera, PhD. Therefore, any insight into the molecular mechanism of this process is significant in developing integrase inhibitors.

Integrase, which was discovered by Saint Louis University researchers in 1978, is one of three HIV proteins crucial to the infections survival. The first protein, reverse transcriptase, converts the ribonucleic acid (RNA) in HIV into deoxyribonucleic acid (DNA). Integrase then inserts the HIV DNA into the immune cell's DNA, making it a permanent part of the cell. The third protein, protease, processes viral proteins and is essential to make infectious virus.

Drugs such as AZT and drug combinations (cocktails) exist to inhibit reverse transcriptase and protease. As of yet, there are no drugs to counter integrase.

By using a biophysical methodology known as Fluorescence Resonance Energy Transfer, Bera and his colleagues showed that the integrase holds the two ends of the viral DNA together prior to integration. Once inside the cell, the two viral DNA ends are fused by the integrase to the cells chromosome. The integrated viral DNA allows virus replication. If the two ends of the viral DNA do not come together, infection does not take place. Millions of HIV tainted cells can be launched from a single infected cell.

We will use this technique in our ongoing studies of the effects of drugs in the process of assembly and disassembly of the viral DNA integrase complexes, Bera said.

The findings were published in the journal Biochemistry. The study is Synaptic Complex Formation of Two Retrovirus DNA Attachment Sites by Integrase: A Fluorescence Energy Transfer Study by Bera and his colleagues, Ajaykumar C. Vora, MS, Roger Chiu and Duane P. Grandgenett, PhD, from Institute for Molecular Virology and Tomasz Heyduk, PhD, from department of biochemistry and molecular biology.

Source: Saint Louis University

 

 

 

Related Videos
Jill Holdsworth, MS, CIC, FAPIC, CRCST, NREMT, CHL
Jill Holdsworth, MS, CIC, FAPIC, CRCSR, NREMT, CHL, and Katie Belski, BSHCA, CRCST, CHL, CIS
Baby visiting a pediatric facility  (Adobe Stock 448959249 by Rawpixel.com)
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Related Content