Antibiotic resistance in pathogenic bacteria is a growing global challenge. Danish researchers have now discovered that bacteria use a code language to avoid being controlled. Understanding this code language will be paramount to developing new antibiotics in the future.
To see a video, visit the website of the Department of Molecular Biology and Genetics at Aarhus University: http://mbg.au.dk/en/news-and-events/news-item/artikel/researchers-reveal-the-secret-code-language-of-bacteria/. Courtesy of Ditlev E. Brodersen
Antibiotic resistance in pathogenic bacteria is a growing global challenge. Danish researchers have now discovered that bacteria use a code language to avoid being controlled. Understanding this code language will be paramount to developing new antibiotics in the future.
Pathogenic bacteria -- such as those that cause tuberculosis and typhoid fever -- use a variety of clever tricks against our immune system and the antibiotics we use to control them.
One of these tricks is the ability to go "under cover" and hide from the immune system and the treatment by going into a dormant state where they are not discovered. For several years, researchers at Aarhus University have studied the molecular mechanisms that enable bacteria to hide in this way, and new research now suggests that they also make use of code language in their attempt to avoid being controlled.
A palindrome is a word that reads the same both forwards and backwards, such as the word "kayak." In close collaboration with other leading researchers in bacterial physiology and bioinformatics at the University of Copenhagen and Aarhus University, a research team at the Department of Molecular Biology and Genetics at Aarhus University, Denmark, led by Associate Professor Ditlev Egeskov Brodersen, has discovered that a large number of pathogenic bacteria use cryptic palindromes embedded in the sequence of amino acids in their proteins to determine whether the dormant state should be established or interrupted.
The results have just been published in the renowned international journal Nucleic Acids Research, and include detailed three-dimensional structures of specific cell toxins that are activated during treatment with for example antibiotics, and demonstrate what happens to them when they bind to specific regions of the DNA of the bacterial cells. The toxins are usually kept in check by their partners, the so-called "anti-toxins," and the researchers have discovered that the palindrome codes enable the anti-toxins to block two toxins at the same time. The amino acid sequence of the codes fits as a key in a lock, and the palindromic sequence is necessary because the two toxins to be blocked are rotated 180 degrees relative to each other.
And moreover, it seems that such codes are present in unprecedented numbers among bacteria. In the analysis of over 4,000 bacterial genomes, the researchers have further shown that up to one-fourth of all known bacteria use such codes in their constant struggle for survival. Therefore, the research results indicate that a better understanding of the code language of the bacteria is necessary to increase the possibilities of developing new antibiotics in the future.
Source: Aarhus University
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.