Healthcare-acquired infections with methicillin-resistant Staphylococcus aureus (MRSA) are a significant cause of increased mortality, morbidity and additional healthcare costs in United States. Surface decontamination technologies that utilize pulsed xenon ultraviolet light (PPX-UV) may be effective at reducing microbial burden. The purpose of a study by Jinadatha, et al. (2014) was to compare standard manual room-cleaning to PPX-UV disinfection technology for MRSA and bacterial heterotrophic plate counts (HPC) on high-touch surfaces in patient rooms.
Rooms vacated by patients that had a MRSA-positive polymerase chain reaction or culture during the current hospitalization and at least a two-day stay were studied. Twenty rooms were then treated according to one of two protocols: standard manual cleaning or PPX-UV. This study evaluated the reduction of MRSA and HPC taken from five high-touch surfaces in rooms vacated by MRSA-positive patients, as a function of cleaning by standard manual methods vs a PPX-UV area disinfection device.
Colony counts in 20 rooms (10 per arm) prior to cleaning varied by cleaning protocol: for HPC, manual (mean = 255, median = 278, q1-q3 132-304) vs PPX-UV (mean = 449, median = 365, q1-q3 332-530), and for MRSA, manual (mean = 127; median = 28.5; q1-q3 8-143) vs PPX-UV (mean = 108; median = 123; q1-q3 14-183). PPX-UV was superior to manual cleaning for MRSA (adjusted incident rate ratio [IRR] = 7; 95% CI <1-41) and for HPC (IRR = 13; 95% CI 4-48).
The researchers concluded that PPX-UV technology appears to be superior to manual cleaning alone for MRSA and HPC. Incorporating 15 minutes of PPX-UV exposure time to current hospital room cleaning practice can improve the overall cleanliness of patient rooms with respect to selected microorganisms. Their research was published in BMC Infectious Diseases.
Reference: Jinadatha C, Quezada R, Huber TW, Williams JB, Zeber JE and Copeland LA. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus. BMC Infectious Diseases 2014, 14:187 doi:10.1186/1471-2334-14-187
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Spring Into Safety: How Seasonal Deep Cleaning Strengthens Hospital Infection Control
June 13th 2025Rooted in ancient rituals of renewal, spring-cleaning has evolved from cultural tradition to a vital infection prevention strategy in modern hospitals—one that blends seasonal deep cleaning with advanced disinfection to reduce pathogens, improve air quality, and protect patients.
AHE Exchange Summit 2025 Brings EVS and Infection Prevention Experts Together in Columbus, Ohio
June 9th 2025The Association for the Health Care Environment (AHE) is set to host its largest event of the year—Exchange Summit 2025—from June 8 to 11 in Columbus, Ohio. With over 600 environmental services (EVS) professionals expected to attend, this year’s conference focuses heavily on infection prevention, interdepartmental collaboration, and education that empowers frontline health care support leaders to improve patient safety and operational efficiency.
Far UV-C Light Shows Promise for Decontaminating Medical Equipment in Clinical Settings
June 4th 2025Manual cleaning gaps on shared hospital equipment can undermine infection control efforts. New research shows far UV-C light can serve as a safe, automated backup to reduce contamination in real-world clinical settings.