Researchers Uncover How Infections Combat Plant Immune Responses

Article

Researchers at the University of California, Riverside, with colleagues at the University of Florida and at UC Davis, have uncovered how viruses circumvent the immune response of plants.

 

The findings were published in the Nov. 2 issue of the Proceedings of the National Academy of Sciences in a paper titled "Three Distinct Suppressors of RNA Silencing Encoded By a 20-kb Viral RNA Genome." UC Riverside associate professor of plant pathology Shou-Wei Ding, at the Center for Plant Cell Biology, and UCR colleagues Rui Lu, Wan-Xiang Li and Michael Shintaku, co-authored the paper with Bryce W. Falk at UC Davis and William O. Dawson at the University of Florida Citrus Research and Education Center.

 

RNA silencing is a recently discovered defense mechanism against virus infection in plants and invertebrates. For successful infection to occur, viruses must be able to suppress the RNA silencing's antiviral response. "Our results demonstrate that citrus tristeza virus (CTV) produces three proteins that are suppressors of RNA silencing and each inhibits RNA silencing in a distinct manner," said Ding.

 

CTV is one of the most important virus pathogens affecting citrus worldwide, causing significant economic losses not only from disease, but also from the need to remove CTV-infected trees. Since viral suppressors are also known to interfere with plant development, further analyses of the CTV suppressors will explain why CTV is capable of such destructive effects. One approach for the control of CTV in a number of labs is to genetically engineer virus-resistant citrus trees.

 

"Our findings will help improving the efficacy of this approach, e.g., by directly targeting the CTV suppressor genes," Ding said. "Our work indicates for the first time that viruses may have to produce more than one suppressor of RNA silencing to overcome the antiviral immunity. Secondly, one of the CTV suppressors identified is mechanistically novel as it inhibits spread of RNA silencing without interfering with intracellular RNA silencing."

 

As a result, that type of suppressor cannot be identified by the methods in wide use today by labs around the world.

 

The California Citrus Research Board, the UC-Biostar program and the U.S. Department of Agriculture funded the research.


Source: University of California, Riverside

 

Related Videos
Baby visiting a pediatric facility  (Adobe Stock 448959249 by Rawpixel.com)
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Rare Disease Month: An Infection Control Today® and Contagion® collaboration.
Vaccine conspiracy theory vector illustration word cloud  (Adobe Stock 460719898 by Colored Lights)
Related Content