Scientists Develop Cheap, Disposable Device for Diagnosing Disease

Article

The development of a reusable microfluidic device for sorting and manipulating cells and other micro/nano meter scale objects will make biomedical diagnosis of diseases, such as HIV and tuberculosis,cheaper and more convenient in regions where medical facilities are sparse or cost is prohibitive. Researchers at Penn State have recently filed a patent to develop such a device.

The cover image of the current issue of the journal Lab on a Chip shows an artist's conception of a reusable acoustic tweezers device (bottom) with a disposable microfluidic laboratory for cell manipulation and disease diagnosis. Courtesy of Huang Lab/Penn State

The development of a reusable microfluidic device for sorting and manipulating cells and other micro/nano meter scale objects will make biomedical diagnosis of diseases, such as HIV and tuberculosis,cheaper and more convenient in regions where medical facilities are sparse or cost is prohibitive. Researchers at Penn State have recently filed a patent to develop such a device.

Based on gentle acoustic vibrations, the device, called acoustic tweezers, is the work of Penn State professor of engineering science and mechanics, Tony Huang and his students. Their work is the cover article for the current issue of the journal Lab on a Chip.

“We believe our acoustic tweezers has tremendous potential, especially in diagnostics, with some applications also in therapeutics,” Huang says. “Our current device works well, but to be used in diagnostics, the whole device has to be disposed of after one use. We have now found a way to separate the fluid containing part of the device from the much more expensive ultrasound producing piezoelectric substrate. This makes disposable acoustic tweezers possible.”

Huang believes that the disposable plastic portion of the device can be manufactured for as little as 25 cents per unit. Even with the addition of electronics for diagnosis, which could be easily added off the shelf, he foresees a manufacturing cost of a few dollars for the complete permanent system, which could then be used over and over with the simple replacement of the plastic microfluidic channels.

“We want to push this toward a commercial product, something that can help people and benefit society,” Huang says.

In the prior device, the microfluidic channel was permanently bound to the substrate and the ultrasound would be radiated directly into the fluid. In the new device, there is an intervening layer, but the ultrasound force is strong enough to manipulate the cells and to pattern them. This patterning of cells is especially important in studying cell-to-cell communication in biology labs or for drug screening.

“In drug screening, you want to examine how cells respond to drugs. With our acoustic tweezers, we can create a high throughput of single cells and see how they respond to drugs. Or, we create all types of cell assemblies and see how they respond to drugs, much more like how it would work inside the body,” says Feng Guo, a PhD student in Huang’s group and lead author of the paper “Reusable acoustic tweezers for disposable devices.”

In addition to its use in diagnosing diseases such as HIV and tuberculosis, both of which are endemic in resource poor regions of the world, the device should find widespread use in hospitals, clinics, biology labs and the home due to its low cost and ease of use.

Additional authors are Yuliang Xie, Sixing Li, James Lata, Liqiang Ren, Zhangming Mao, Baiyang Ren, Mengxi Wu and Adem Ozcelik, all of Penn State.

Funding was provided by the National Institutes of Health, the National Science Foundation, and the Penn State Center for Nanoscale Science (MRSEC). Components of the work were performed in the Penn State Materials Research Institute’s Nanofabrication Laboratory.

Source: Penn State Materials Research Institute 



Related Videos
Jill Holdsworth, MS, CIC, FAPIC, CRCST, NREMT, CHL
Jill Holdsworth, MS, CIC, FAPIC, CRCSR, NREMT, CHL, and Katie Belski, BSHCA, CRCST, CHL, CIS
Baby visiting a pediatric facility  (Adobe Stock 448959249 by Rawpixel.com)
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Related Content