A novel antimicrobial catheter that remains infection-free for up to 12 weeks could dramatically improve the lives of long-term catheter users. The scientists who have developed the new technology are presenting their work at the Society for General Microbiology's Autumn Conference at the University of Warwick.
Researchers at the University of Nottingham have developed a catheter that can kill most urinary bacteria, including most strains of Proteus bacteria the most common cause of catheter infections. Importantly the antimicrobial catheter retains its activity for between six to 12 weeks, making it suitable for long-term use, unlike existing commercial anti-infection catheters.
Urinary catheters are commonly used to manage incontinence in the elderly or individuals who have suffered long-term spinal cord injury. All catheters become infected after a couple of weeks and Proteus bacteria are responsible for up to 40 percent of these infections. The bacterium sticks to catheter surfaces and breaks down urea, causing the pH of urine to rise. This causes deposits of mineral crystals in the catheter which blocks it, preventing drainage. If unnoticed, catheter blockage can lead to kidney and bloodstream infections, which ultimately may result in potentially fatal septic shock.
This new antimicrobial catheter has significant advantages over existing solutions, explains Dr. Roger Bayston who is leading the development: "Commercial 'anti-infection' catheters are active for only a few days and are not suitable for long-term use. There is an urgent need for an antimicrobial catheter that is suitable for long-term use. Our catheter uses patented technology that does not involve any coatings which extends its antimicrobial activity. The process involves introducing antimicrobial molecules into the catheter material after manufacture, so that they are evenly distributed throughout it, yet can move through the material to replenish those washed away from the surface."
There are 100 million catheter users worldwide whose lives can be severely disrupted by illness from repeat infections and side effects from antibiotics. "The catheter technology has proven benefit in other medical settings and has the potential to be the solution to recurrent infections in long-term catheter users, which will improve quality of life of these individuals. In addition, reducing the need to frequently change catheters and treat infections would represent huge financial savings to the NHS," Bayston says.
Source: Society for General Microbiology
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.