Every 18 seconds someone dies from tuberculosis (TB). It is the world's most deadly infectious disease. Mycobacterium tuberculosis, the causative agent of TB, has infected more than one-third of the entire human population with an annual death toll of approximately 1.5 million people. For the first time, an international team of scientists from Monash University and Harvard University have seen how, at a molecular level, the human immune system recognizes TB infected cells and initiates an immune response. Their findings, published in Nature Communications, are the first step toward developing new diagnostic tools and novel immunotherapies.
This is a stylized image of the CD1 protein presenting microbial lipids to T cells. Courtesy of Imaging CoE
Every 18 seconds someone dies from tuberculosis (TB). It is the world's most deadly infectious disease. Mycobacterium tuberculosis, the causative agent of TB, has infected more than one-third of the entire human population with an annual death toll of approximately 1.5 million people. For the first time, an international team of scientists from Monash University and Harvard University have seen how, at a molecular level, the human immune system recognizes TB infected cells and initiates an immune response. Their findings, published in Nature Communications, are the first step toward developing new diagnostic tools and novel immunotherapies.
Lead author professor Jamie Rossjohn says one of the main reasons for our current lack of knowledge comes down to the complexity of the bacterium itself. Working with professor Branch Moody's team at Harvard, they have begun to gain key insight into how the immune system can recognize this bacterium.
Crucial to the success of M. tuberculosis as a pathogen is its highly unusual cell wall that not only serves as a barrier against therapeutic attack, but also modulates the host immune system. Conversely, its cell wall may also be the "Achilles' heel" of mycobacteria as it is essential for the growth and survival of these organisms. This unique cell wall is comprised of multiple layers that form a rich waxy barrier, and many of these lipid -- also known as fatty acids -- components represent potential targets for T-cell surveillance.
Specifically, using the Australian Synchrotron, the team of scientists have shown how the immune system recognizes components of the waxy barrier from the M. tuberculosis cell wall.
"With so many people dying from TB every year, any improvements in diagnosis, therapeutic design and vaccination will have major impacts," Moody says.
"Our research is focused on gaining a basic mechanistic understanding of an important biomedical question. And may ultimately provide a platform for designing novel therapeutics for TB and treat this devastating disease," Rossjohn adds.
Source: Monash University
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.