Scientists Discover How the Immune System Targets TB

Article

Every 18 seconds someone dies from tuberculosis (TB). It is the world's most deadly infectious disease. Mycobacterium tuberculosis, the causative agent of TB, has infected more than one-third of the entire human population with an annual death toll of approximately 1.5 million people. For the first time, an international team of scientists from Monash University and Harvard University have seen how, at a molecular level, the human immune system recognizes TB infected cells and initiates an immune response. Their findings, published in Nature Communications, are the first step toward developing new diagnostic tools and novel immunotherapies.

This is a stylized image of the CD1 protein presenting microbial lipids to T cells. Courtesy of Imaging CoE

Every 18 seconds someone dies from tuberculosis (TB). It is the world's most deadly infectious disease. Mycobacterium tuberculosis, the causative agent of TB, has infected more than one-third of the entire human population with an annual death toll of approximately 1.5 million people. For the first time, an international team of scientists from Monash University and Harvard University have seen how, at a molecular level, the human immune system recognizes TB infected cells and initiates an immune response. Their findings, published in Nature Communications, are the first step toward developing new diagnostic tools and novel immunotherapies.

Lead author professor Jamie Rossjohn says one of the main reasons for our current lack of knowledge comes down to the complexity of the bacterium itself. Working with professor Branch Moody's team at Harvard, they have begun to gain key insight into how the immune system can recognize this bacterium.

Crucial to the success of M. tuberculosis as a pathogen is its highly unusual cell wall that not only serves as a barrier against therapeutic attack, but also modulates the host immune system. Conversely, its cell wall may also be the "Achilles' heel" of mycobacteria as it is essential for the growth and survival of these organisms. This unique cell wall is comprised of multiple layers that form a rich waxy barrier, and many of these lipid -- also known as fatty acids -- components represent potential targets for T-cell surveillance.

Specifically, using the Australian Synchrotron, the team of scientists have shown how the immune system recognizes components of the waxy barrier from the M. tuberculosis cell wall.

"With so many people dying from TB every year, any improvements in diagnosis, therapeutic design and vaccination will have major impacts," Moody says.

"Our research is focused on gaining a basic mechanistic understanding of an important biomedical question. And may ultimately provide a platform for designing novel therapeutics for TB and treat this devastating disease," Rossjohn adds.

Source: Monash University
 

Related Videos
Set of white bottles with cleaning liquids on the white background. (Adobe Stock 6338071172112 by zolnierek)
Medical investigators going over data. (AdobeStock 589197902 by Wasan)
CDC logo is seen on a laptop. (Adobe Stock 428450603 by monticellllo)
Association for the Health Care Environment (Logo used with permission)
COVID-19 germs, fungi, bacteria objects. (Adobe Stock 584704860 by chawalit)
Ambassador Deborah Birx, , speaks with Infection Control Today about masks in schools and the newest variant.
mRNA technology  (Adobe Stock 485886181 by kaptn)
Ambassador Deborah Birx, MD
Woman lying in hospital bed (Adobe Stock, unknown)
Related Content